Using an Amazon EventBridge rule to run an AWS Glue job or invoke an AWS Glue workflow job every 15 minutes are two possible solutions that will meet the requirements. AWS Glue is a serverless ETL service that can process and load data from various sources to various targets, including Amazon Redshift. AWS Glue can handle different data formats, such as CSV, JSON, and Parquet, and also support schema evolution, meaning it can adapt to changes in the data schema over time. AWS Glue can also leverage Apache Spark to perform distributed processing and transformation of large datasets. AWS Glue integrates with Amazon EventBridge, which is a serverless event bus service that can trigger actions based on rules and schedules. By using an Amazon EventBridge rule, you can invoke an AWS Glue job or workflow every 15 minutes, and configure the job or workflow to run an AWS Glue crawler and then load the data into the Amazon Redshift tables. This way, you can build a cost-effective and scalable ETL pipeline that can handle data from 10 source systems and function correctly despite changes to the data schema.
The other options are not solutions that will meet the requirements. Option C, configuring an AWS Lambda function to invoke an AWS Glue crawler when a file is loaded into the S3 bucket, and creating a second Lambda function to run the AWS Glue job, is not a feasible solution, as it would require a lot of Lambda invocations and coordination. AWS Lambda has some limits on the execution time, memory, and concurrency, which can affect the performance and reliability of the ETL pipeline. Option D, configuring an AWS Lambda function to invoke an AWS Glue workflow when a file is loaded into the S3 bucket, is not a necessary solution, as you can use an Amazon EventBridge rule to invoke the AWS Glue workflow directly, without the need for a Lambda function. Option E, configuring an AWS Lambda function to invoke an AWS Glue job when a file is loaded into the S3 bucket, and configuring the AWS Glue job to put smaller partitions of the DataFrame into an Amazon Kinesis Data Firehose delivery stream, is not a cost-effective solution, as it would incur additional costs for Lambda invocations and data delivery. Moreover, using Amazon Kinesis Data Firehose to load data into Amazon Redshift is not suitable for frequent and small batches of data, as it can cause performance issues and data fragmentation. References:
AWS Glue
Amazon EventBridge
Using AWS Glue to run ETL jobs against non-native JDBC data sources
[AWS Lambda quotas]
[Amazon Kinesis Data Firehose quotas]