A company is using an AWS Transfer Family server to migrate data from an on-premises environment to AWS. Company policy mandates the use of TLS 1.2 or above to encrypt the data in transit.
Which solution will meet these requirements?
A data engineer needs to build an extract, transform, and load (ETL) job. The ETL job will process daily incoming .csv files that users upload to an Amazon S3 bucket. The size of each S3 object is less than 100 MB.
Which solution will meet these requirements MOST cost-effectively?
A company stores datasets in JSON format and .csv format in an Amazon S3 bucket. The company has Amazon RDS for Microsoft SQL Server databases, Amazon DynamoDB tables that are in provisioned capacity mode, and an Amazon Redshift cluster. A data engineering team must develop a solution that will give data scientists the ability to query all data sources by using syntax similar to SQL.
Which solution will meet these requirements with the LEAST operational overhead?
A company wants to ingest streaming data into an Amazon Redshift data warehouse from an Amazon Managed Streaming for Apache Kafka (Amazon MSK) cluster. A data engineer needs to develop a solution that provides low data access time and that optimizes storage costs.
Which solution will meet these requirements with the LEAST operational overhead?
A company uses Amazon Redshift as a data warehouse solution. One of the datasets that the company stores in Amazon Redshift contains data for a vendor.
Recently, the vendor asked the company to transfer the vendor's data into the vendor's Amazon S3 bucket once each week.
Which solution will meet this requirement?
A company wants to migrate an application and an on-premises Apache Kafka server to AWS. The application processes incremental updates that an on-premises Oracle database sends to the Kafka server. The company wants to use the replatform migration strategy instead of the refactor strategy.
Which solution will meet these requirements with the LEAST management overhead?
A retail company stores customer data in an Amazon S3 bucket. Some of the customer data contains personally identifiable information (PII) about customers. The company must not share PII data with business partners.
A data engineer must determine whether a dataset contains PII before making objects in the dataset available to business partners.
Which solution will meet this requirement with the LEAST manual intervention?
A company needs to implement a data mesh architecture for trading, risk, and compliance teams. Each team has its own data but needs to share views. They have 1,000+ tables in 50 Glue databases. All teams use Athena and Redshift, and compliance requires full auditing and PII access control.
A company has a gaming application that stores data in Amazon DynamoDB tables. A data engineer needs to ingest the game data into an Amazon OpenSearch Service cluster. Data updates must occur in near real time.
Which solution will meet these requirements?
Files from multiple data sources arrive in an Amazon S3 bucket on a regular basis. A data engineer wants to ingest new files into Amazon Redshift in near real time when the new files arrive in the S3 bucket.
Which solution will meet these requirements?
A company needs to store semi-structured transactional data in a serverless database.
The application writes data infrequently but reads it frequently, with millisecond retrieval required.
A company stores customer data in an Amazon S3 bucket. The company must permanently delete all customer data that is older than 7 years.
A company generates reports from 30 tables in an Amazon Redshift data warehouse. The data source is an operational Amazon Aurora MySQL database that contains 100 tables. Currently, the company refreshes all data from Aurora to Redshift every hour, which causes delays in report generation.
Which combination of steps will meet these requirements with the LEAST operational overhead? (Select TWO.)
A gaming company uses Amazon Kinesis Data Streams to collect clickstream data. The company uses Amazon Kinesis Data Firehose delivery streams to store the data in JSON format in Amazon S3. Data scientists at the company use Amazon Athena to query the most recent data to obtain business insights.
The company wants to reduce Athena costs but does not want to recreate the data pipeline.
Which solution will meet these requirements with the LEAST management effort?
A company maintains an Amazon Redshift provisioned cluster that the company uses for extract, transform, and load (ETL) operations to support critical analysis tasks. A sales team within the company maintains a Redshift cluster that the sales team uses for business intelligence (BI) tasks.
The sales team recently requested access to the data that is in the ETL Redshift cluster so the team can perform weekly summary analysis tasks. The sales team needs to join data from the ETL cluster with data that is in the sales team's BI cluster.
The company needs a solution that will share the ETL cluster data with the sales team without interrupting the critical analysis tasks. The solution must minimize usage of the computing resources of the ETL cluster.
Which solution will meet these requirements?
A data engineer has two datasets that contain sales information for multiple cities and states. One dataset is named reference, and the other dataset is named primary.
The data engineer needs a solution to determine whether a specific set of values in the city and state columns of the primary dataset exactly match the same specific values in the reference dataset. The data engineer wants to use Data Quality Definition Language (DQDL) rules in an AWS Glue Data Quality job.
Which rule will meet these requirements?
A data engineer needs to use an Amazon QuickSight dashboard that is based on Amazon Athena queries on data that is stored in an Amazon S3 bucket. When the data engineer connects to the QuickSight dashboard, the data engineer receives an error message that indicates insufficient permissions.
Which factors could cause to the permissions-related errors? (Choose two.)
A company analyzes data in a data lake every quarter to perform inventory assessments. A data engineer uses AWS Glue DataBrew to detect any personally identifiable information (PII) about customers within the data. The company's privacy policy considers some custom categories of information to be PII. However, the categories are not included in standard DataBrew data quality rules.
The data engineer needs to modify the current process to scan for the custom PII categories across multiple datasets within the data lake.
Which solution will meet these requirements with the LEAST operational overhead?
A data engineer uses AWS Lake Formation to manage access to data that is stored in an Amazon S3 bucket. The data engineer configures an AWS Glue crawler to discover data at a specific file location in the bucket, s3://examplepath. The crawler execution fails with the following error:
"The S3 location: s3://examplepath is not registered."
The data engineer needs to resolve the error.
A company uses Amazon Redshift as its data warehouse service. A data engineer needs to design a physical data model.
The data engineer encounters a de-normalized table that is growing in size. The table does not have a suitable column to use as the distribution key.
Which distribution style should the data engineer use to meet these requirements with the LEAST maintenance overhead?
A banking company uses an application to collect large volumes of transactional data. The company uses Amazon Kinesis Data Streams for real-time analytics. The company's application uses the PutRecord action to send data to Kinesis Data Streams.
A data engineer has observed network outages during certain times of day. The data engineer wants to configure exactly-once delivery for the entire processing pipeline.
Which solution will meet this requirement?
A data engineer needs to run a data transformation job whenever a user adds a file to an Amazon S3 bucket. The job will run for less than 1 minute. The job must send the output through an email message to the data engineer. The data engineer expects users to add one file every hour of the day.
Which solution will meet these requirements in the MOST operationally efficient way?
A company has a data processing pipeline that includes several dozen steps. The data processing pipeline needs to send alerts in real time when a step fails or succeeds. The data processing pipeline uses a combination of Amazon S3 buckets, AWS Lambda functions, and AWS Step Functions state machines.
A data engineer needs to create a solution to monitor the entire pipeline.
Which solution will meet these requirements?
A company saves customer data to an Amazon S3 bucket. The company uses server-side encryption with AWS KMS keys (SSE-KMS) to encrypt the bucket. The dataset includes personally identifiable information (PII) such as social security numbers and account details.
Data that is tagged as PII must be masked before the company uses customer data for analysis. Some users must have secure access to the PII data during the preprocessing phase. The company needs a low-maintenance solution to mask and secure the PII data throughout the entire engineering pipeline.
Which combination of solutions will meet these requirements? (Select TWO.)
A company receives call logs as Amazon S3 objects that contain sensitive customer information. The company must protect the S3 objects by using encryption. The company must also use encryption keys that only specific employees can access.
Which solution will meet these requirements with the LEAST effort?
A company has used an Amazon Redshift table that is named Orders for 6 months. The company performs weekly updates and deletes on the table. The table has an interleaved sort key on a column that contains AWS Regions.
The company wants to reclaim disk space so that the company will not run out of storage space. The company also wants to analyze the sort key column.
Which Amazon Redshift command will meet these requirements?
A data engineer runs Amazon Athena queries on data that is in an Amazon S3 bucket. The Athena queries use AWS Glue Data Catalog as a metadata table.
The data engineer notices that the Athena query plans are experiencing a performance bottleneck. The data engineer determines that the cause of the performance bottleneck is the large number of partitions that are in the S3 bucket. The data engineer must resolve the performance bottleneck and reduce Athena query planning time.
Which solutions will meet these requirements? (Choose two.)
A data engineer needs to use Amazon Neptune to develop graph applications.
Which programming languages should the engineer use to develop the graph applications? (Select TWO.)
A company uses Amazon Athena to run SQL queries for extract, transform, and load (ETL) tasks by using Create Table As Select (CTAS). The company must use Apache Spark instead of SQL to generate analytics.
Which solution will give the company the ability to use Spark to access Athena?
A company uses an Amazon Redshift provisioned cluster as its database. The Redshift cluster has five reserved ra3.4xlarge nodes and uses key distribution.
A data engineer notices that one of the nodes frequently has a CPU load over 90%. SQL Queries that run on the node are queued. The other four nodes usually have a CPU load under 15% during daily operations.
The data engineer wants to maintain the current number of compute nodes. The data engineer also wants to balance the load more evenly across all five compute nodes.
Which solution will meet these requirements?
A company is building an inventory management system and an inventory reordering system to automatically reorder products. Both systems use Amazon Kinesis Data Streams. The inventory management system uses the Amazon Kinesis Producer Library (KPL) to publish data to a stream. The inventory reordering system uses the Amazon Kinesis Client Library (KCL) to consume data from the stream. The company configures the stream to scale up and down as needed.
Before the company deploys the systems to production, the company discovers that the inventory reordering system received duplicated data.
Which factors could have caused the reordering system to receive duplicated data? (Select TWO.)
A data engineer uses Amazon Redshift to run resource-intensive analytics processes once every month. Every month, the data engineer creates a new Redshift provisioned cluster. The data engineer deletes the Redshift provisioned cluster after the analytics processes are complete every month. Before the data engineer deletes the cluster each month, the data engineer unloads backup data from the cluster to an Amazon S3 bucket.
The data engineer needs a solution to run the monthly analytics processes that does not require the data engineer to manage the infrastructure manually.
Which solution will meet these requirements with the LEAST operational overhead?
A data engineer needs to create an Amazon Athena table based on a subset of data from an existing Athena table named cities_world. The cities_world table contains cities that are located around the world. The data engineer must create a new table named cities_us to contain only the cities from cities_world that are located in the US.
Which SQL statement should the data engineer use to meet this requirement?

A data engineer is optimizing query performance in Amazon Athena notebooks that use Apache Spark to analyze large datasets that are stored in Amazon S3. The data is partitioned. An AWS Glue crawler updates the partitions.
The data engineer wants to minimize the amount of data that is scanned to improve efficiency of Athena queries.
Which solution will meet these requirements?
A company stores time-series data that is collected from streaming services in an Amazon S3 bucket. The company must ensure that only workloads that are deployed within the company's VPC can access the data.
Which solution will meet this requirement?
A data engineer needs to schedule a workflow that runs a set of AWS Glue jobs every day. The data engineer does not require the Glue jobs to run or finish at a specific time.
Which solution will run the Glue jobs in the MOST cost-effective way?
A company needs to build a data lake in AWS. The company must provide row-level data access and column-level data access to specific teams. The teams will access the data by using Amazon Athena, Amazon Redshift Spectrum, and Apache Hive from Amazon EMR.
Which solution will meet these requirements with the LEAST operational overhead?
A company uses Amazon S3 to store semi-structured data in a transactional data lake. Some of the data files are small, but other data files are tens of terabytes.
A data engineer must perform a change data capture (CDC) operation to identify changed data from the data source. The data source sends a full snapshot as a JSON file every day and ingests the changed data into the data lake.
Which solution will capture the changed data MOST cost-effectively?
A company stores customer data in an Amazon S3 bucket. Multiple teams in the company want to use the customer data for downstream analysis. The company needs to ensure that the teams do not have access to personally identifiable information (PII) about the customers.
Which solution will meet this requirement with LEAST operational overhead?
A data engineer needs to build an enterprise data catalog based on the company's Amazon S3 buckets and Amazon RDS databases. The data catalog must include storage format metadata for the data in the catalog.
Which solution will meet these requirements with the LEAST effort?
A data engineer maintains custom Python scripts that perform a data formatting process that many AWS Lambda functions use. When the data engineer needs to modify the Python scripts, the data engineer must manually update all the Lambda functions.
The data engineer requires a less manual way to update the Lambda functions.
Which solution will meet this requirement?
A company receives marketing campaign data from a vendor. The company ingests the data into an Amazon S3 bucket every 40 to 60 minutes. The data is in CSV format. File sizes are between 100 KB and 300 KB.
A data engineer needs to set-up an extract, transform, and load (ETL) pipeline to upload the content of each file to Amazon Redshift.
Which solution will meet these requirements with the LEAST operational overhead?
A company is developing machine learning (ML) models. A data engineer needs to apply data quality rules to training data. The company stores the training data in an Amazon S3 bucket.
A company uses AWS Glue Apache Spark jobs to handle extract, transform, and load (ETL) workloads. The company has enabled logging and monitoring for all AWS Glue jobs. One of the AWS Glue jobs begins to fail. A data engineer investigates the error and wants to examine metrics for all individual stages within the job. How can the data engineer access the stage metrics?
A company is designing a serverless data processing workflow in AWS Step Functions that involves multiple steps. The processing workflow ingests data from an external API, transforms the data by using multiple AWS Lambda functions, and loads the transformed data into Amazon DynamoDB.
The company needs the workflow to perform specific steps based on the content of the incoming data.
Which Step Functions state type should the company use to meet this requirement?
A company uses Amazon S3 as a data lake. The company sets up a data warehouse by using a multi-node Amazon Redshift cluster. The company organizes the data files in the data lake based on the data source of each data file.
The company loads all the data files into one table in the Redshift cluster by using a separate COPY command for each data file location. This approach takes a long time to load all the data files into the table. The company must increase the speed of the data ingestion. The company does not want to increase the cost of the process.
Which solution will meet these requirements?
A company stores employee data in Amazon Redshift A table named Employee uses columns named Region ID, Department ID, and Role ID as a compound sort key. Which queries will MOST increase the speed of a query by using a compound sort key of the table? (Select TWO.)
A data engineer needs to create an empty copy of an existing table in Amazon Athena to perform data processing tasks. The existing table in Athena contains 1,000 rows.
Which query will meet this requirement?
A company uses AWS Step Functions to orchestrate a data pipeline. The pipeline consists of Amazon EMR jobs that ingest data from data sources and store the data in an Amazon S3 bucket. The pipeline also includes EMR jobs that load the data to Amazon Redshift.
The company's cloud infrastructure team manually built a Step Functions state machine. The cloud infrastructure team launched an EMR cluster into a VPC to support the EMR jobs. However, the deployed Step Functions state machine is not able to run the EMR jobs.
Which combination of steps should the company take to identify the reason the Step Functions state machine is not able to run the EMR jobs? (Choose two.)
A company maintains a data warehouse in an on-premises Oracle database. The company wants to build a data lake on AWS. The company wants to load data warehouse tables into Amazon S3 and synchronize the tables with incremental data that arrives from the data warehouse every day.
Each table has a column that contains monotonically increasing values. The size of each table is less than 50 GB. The data warehouse tables are refreshed every night between 1 AM and 2 AM. A business intelligence team queries the tables between 10 AM and 8 PM every day.
Which solution will meet these requirements in the MOST operationally efficient way?
A company receives test results from testing facilities that are located around the world. The company stores the test results in millions of 1 KB JSON files in an Amazon S3 bucket. A data engineer needs to process the files, convert them into Apache Parquet format, and load them into Amazon Redshift tables. The data engineer uses AWS Glue to process the files, AWS Step Functions to orchestrate the processes, and Amazon EventBridge to schedule jobs.
The company recently added more testing facilities. The time required to process files is increasing. The data engineer must reduce the data processing time.
Which solution will MOST reduce the data processing time?
A company created an extract, transform, and load (ETL) data pipeline in AWS Glue. A data engineer must crawl a table that is in Microsoft SQL Server. The data engineer needs to extract, transform, and load the output of the crawl to an Amazon S3 bucket. The data engineer also must orchestrate the data pipeline.
Which AWS service or feature will meet these requirements MOST cost-effectively?
A data engineer is building an automated extract, transform, and load (ETL) ingestion pipeline by using AWS Glue. The pipeline ingests compressed files that are in an Amazon S3 bucket. The ingestion pipeline must support incremental data processing.
Which AWS Glue feature should the data engineer use to meet this requirement?
A data engineer uses Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to run data pipelines in an AWS account. A workflow recently failed to run. The data engineer needs to use Apache Airflow logs to diagnose the failure of the workflow. Which log type should the data engineer use to diagnose the cause of the failure?
A company has a data warehouse in Amazon Redshift. To comply with security regulations, the company needs to log and store all user activities and connection activities for the data warehouse.
Which solution will meet these requirements?
An ecommerce company processes millions of orders each day. The company uses AWS Glue ETL to collect data from multiple sources, clean the data, and store the data in an Amazon S3 bucket in CSV format by using the S3 Standard storage class. The company uses the stored data to conduct daily analysis.
The company wants to optimize costs for data storage and retrieval.
Which solution will meet this requirement?
A data engineer must ingest a source of structured data that is in .csv format into an Amazon S3 data lake. The .csv files contain 15 columns. Data analysts need to run Amazon Athena queries on one or two columns of the dataset. The data analysts rarely query the entire file.
Which solution will meet these requirements MOST cost-effectively?
A company stores data from an application in an Amazon DynamoDB table that operates in provisioned capacity mode. The workloads of the application have predictable throughput load on a regular schedule. Every Monday, there is an immediate increase in activity early in the morning. The application has very low usage during weekends.
The company must ensure that the application performs consistently during peak usage times.
Which solution will meet these requirements in the MOST cost-effective way?
A company has a data lake in Amazon 53. The company uses AWS Glue to catalog data and AWS Glue Studio to implement data extract, transform, and load (ETL) pipelines.
The company needs to ensure that data quality issues are checked every time the pipelines run. A data engineer must enhance the existing pipelines to evaluate data quality rules based on predefined thresholds.
Which solution will meet these requirements with the LEAST implementation effort?
A data engineer must orchestrate a data pipeline that consists of one AWS Lambda function and one AWS Glue job. The solution must integrate with AWS services.
Which solution will meet these requirements with the LEAST management overhead?
A data engineer must build an extract, transform, and load (ETL) pipeline to process and load data from 10 source systems into 10 tables that are in an Amazon Redshift database. All the source systems generate .csv, JSON, or Apache Parquet files every 15 minutes. The source systems all deliver files into one Amazon S3 bucket. The file sizes range from 10 MB to 20 GB. The ETL pipeline must function correctly despite changes to the data schema.
Which data pipeline solutions will meet these requirements? (Choose two.)
A company has an Amazon Redshift data warehouse that users access by using a variety of IAM roles. More than 100 users access the data warehouse every day.
The company wants to control user access to the objects based on each user's job role, permissions, and how sensitive the data is.
Which solution will meet these requirements?