Summer Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: geek65

Data-Engineer-Associate AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Questions 4

A company uses Amazon S3 buckets, AWS Glue tables, and Amazon Athena as components of a data lake. Recently, the company expanded its sales range to multiple new states. The company wants to introduce state names as a new partition to the existing S3 bucket, which is currently partitioned by date.

The company needs to ensure that additional partitions will not disrupt daily synchronization between the AWS Glue Data Catalog and the S3 buckets.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use the AWS Glue API to manually update the Data Catalog.

B.

Run an MSCK REPAIR TABLE command in Athena.

C.

Schedule an AWS Glue crawler to periodically update the Data Catalog.

D.

Run a REFRESH TABLE command in Athena.

Buy Now
Questions 5

A company hosts its applications on Amazon EC2 instances. The company must use SSL/TLS connections that encrypt data in transit to communicate securely with AWS infrastructure that is managed by a customer.

A data engineer needs to implement a solution to simplify the generation, distribution, and rotation of digital certificates. The solution must automatically renew and deploy SSL/TLS certificates.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Store self-managed certificates on the EC2 instances.

B.

Use AWS Certificate Manager (ACM).

C.

Implement custom automation scripts in AWS Secrets Manager.

D.

Use Amazon Elastic Container Service (Amazon ECS) Service Connect.

Buy Now
Questions 6

A company is setting up a data pipeline in AWS. The pipeline extracts client data from Amazon S3 buckets, performs quality checks, and transforms the data. The pipeline stores the processed data in a relational database. The company will use the processed data for future queries.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use AWS Glue ETL to extract the data from the S3 buckets and perform the transformations. Use AWS Glue Data Quality to enforce suggested quality rules. Load the data and the quality check results into an Amazon RDS for MySQL instance.

B.

Use AWS Glue Studio to extract the data from the S3 buckets. Use AWS Glue DataBrew to perform the transformations and quality checks. Load the processed data into an Amazon RDS for MySQL instance. Load the quality check results into a new S3 bucket.

C.

Use AWS Glue ETL to extract the data from the S3 buckets and perform the transformations. Use AWS Glue DataBrew to perform quality checks. Load the processed data and the quality check results into a new S3 bucket.

D.

Use AWS Glue Studio to extract the data from the S3 buckets. Use AWS Glue DataBrew to perform the transformations and quality checks. Load the processed data and quality check results into an Amazon RDS for MySQL instance.

Buy Now
Questions 7

A company maintains a data warehouse in an on-premises Oracle database. The company wants to build a data lake on AWS. The company wants to load data warehouse tables into Amazon S3 and synchronize the tables with incremental data that arrives from the data warehouse every day.

Each table has a column that contains monotonically increasing values. The size of each table is less than 50 GB. The data warehouse tables are refreshed every night between 1 AM and 2 AM. A business intelligence team queries the tables between 10 AM and 8 PM every day.

Which solution will meet these requirements in the MOST operationally efficient way?

Options:

A.

Use an AWS Database Migration Service (AWS DMS) full load plus CDC job to load tables that contain monotonically increasing data columns from the on-premises data warehouse to Amazon S3. Use custom logic in AWS Glue to append the daily incremental data to a full-load copy that is in Amazon S3.

B.

Use an AWS Glue Java Database Connectivity (JDBC) connection. Configure a job bookmark for a column that contains monotonically increasing values. Write custom logic to append the daily incremental data to a full-load copy that is in Amazon S3.

C.

Use an AWS Database Migration Service (AWS DMS) full load migration to load the data warehouse tables into Amazon S3 every day Overwrite the previous day's full-load copy every day.

D.

Use AWS Glue to load a full copy of the data warehouse tables into Amazon S3 every day. Overwrite the previous day's full-load copy every day.

Buy Now
Questions 8

A data engineering team is using an Amazon Redshift data warehouse for operational reporting. The team wants to prevent performance issues that might result from long- running queries. A data engineermust choose a system table in Amazon Redshift to record anomalies when a query optimizer identifies conditions that might indicate performance issues.

Which table views should the data engineer use to meet this requirement?

Options:

A.

STL USAGE CONTROL

B.

STL ALERT EVENT LOG

C.

STL QUERY METRICS

D.

STL PLAN INFO

Buy Now
Questions 9

A company is building an analytics solution. The solution uses Amazon S3 for data lake storage and Amazon Redshift for a data warehouse. The company wants to use Amazon Redshift Spectrum to query the data that is in Amazon S3.

Which actions will provide the FASTEST queries? (Choose two.)

Options:

A.

Use gzip compression to compress individual files to sizes that are between 1 GB and 5 GB.

B.

Use a columnar storage file format.

C.

Partition the data based on the most common query predicates.

D.

Split the data into files that are less than 10 KB.

E.

Use file formats that are not

Buy Now
Questions 10

A company receives call logs as Amazon S3 objects that contain sensitive customer information. The company must protect the S3 objects by using encryption. The company must also use encryption keys that only specific employees can access.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Use an AWS CloudHSM cluster to store the encryption keys. Configure the process that writes to Amazon S3 to make calls to CloudHSM to encrypt and decrypt the objects. Deploy an IAM policy that restricts access to the CloudHSM cluster.

B.

Use server-side encryption with customer-provided keys (SSE-C) to encrypt the objects that contain customer information. Restrict access to the keys that encrypt the objects.

C.

Use server-side encryption with AWS KMS keys (SSE-KMS) to encrypt the objects that contain customer information. Configure an IAM policy that restricts access to the KMS keys that encrypt the objects.

D.

Use server-side encryption with Amazon S3 managed keys (SSE-S3) to encrypt the objects that contain customer information. Configure an IAM policy that restricts access to the Amazon S3 managed keys that encrypt the objects.

Buy Now
Questions 11

A technology company currently uses Amazon Kinesis Data Streams to collect log data in real time. The company wants to use Amazon Redshift for downstream real-time queries and to enrich the log data.

Which solution will ingest data into Amazon Redshift with the LEAST operational overhead?

Options:

A.

Set up an Amazon Data Firehose delivery stream to send data to a Redshift provisioned cluster table.

B.

Set up an Amazon Data Firehose delivery stream to send data to Amazon S3. Configure a Redshift provisioned cluster to load data every minute.

C.

Configure Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to send data directly to a Redshift provisioned cluster table.

D.

Use Amazon Redshift streaming ingestion from Kinesis Data Streams and to present data as a materialized view.

Buy Now
Questions 12

A media company wants to improve a system that recommends media content to customer based on user behavior and preferences. To improve the recommendation system, the company needs to incorporate insights from third-party datasets into the company's existing analytics platform.

The company wants to minimize the effort and time required to incorporate third-party datasets.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use API calls to access and integrate third-party datasets from AWS Data Exchange.

B.

Use API calls to access and integrate third-party datasets from AWS

C.

Use Amazon Kinesis Data Streams to access and integrate third-party datasets from AWS CodeCommit repositories.

D.

Use Amazon Kinesis Data Streams to access and integrate third-party datasets from Amazon Elastic Container Registry (Amazon ECR).

Buy Now
Questions 13

A company has a gaming application that stores data in Amazon DynamoDB tables. A data engineer needs to ingest the game data into an Amazon OpenSearch Service cluster. Data updates must occur in near real time.

Which solution will meet these requirements?

Options:

A.

Use AWS Step Functions to periodically export data from the Amazon DynamoDB tables to an Amazon S3 bucket. Use an AWS Lambda function to load the data into Amazon OpenSearch Service.

B.

Configure an AW5 Glue job to have a source of Amazon DynamoDB and a destination of Amazon OpenSearch Service to transfer data in near real time.

C.

Use Amazon DynamoDB Streams to capture table changes. Use an AWS Lambda function to process and update the data in Amazon OpenSearch Service.

D.

Use a custom OpenSearch plugin to sync data from the Amazon DynamoDB tables.

Buy Now
Questions 14

A telecommunications company collects network usage data throughout each day at a rate of several thousand data points each second. The company runs an application to process the usage data in real time. The company aggregates and stores the data in an Amazon Aurora DB instance.

Sudden drops in network usage usually indicate a network outage. The company must be able to identify sudden drops in network usage so the company can take immediate remedial actions.

Which solution will meet this requirement with the LEAST latency?

Options:

A.

Create an AWS Lambda function to query Aurora for drops in network usage. Use Amazon EventBridge to automatically invoke the Lambda function every minute.

B.

Modify the processing application to publish the data to an Amazon Kinesis data stream. Create an Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) application to detect drops in network usage.

C.

Replace the Aurora database with an Amazon DynamoDB table. Create an AWS Lambda function to query the DynamoDB table for drops in network usage every minute. Use DynamoDB Accelerator (DAX) between the processing application and DynamoDB table.

D.

Create an AWS Lambda function within the Database Activity Streams feature of Aurora to detect drops in network usage.

Buy Now
Questions 15

A retail company is using an Amazon Redshift cluster to support real-time inventory management. The company has deployed an ML model on a real-time endpoint in Amazon SageMaker.

The company wants to make real-time inventory recommendations. The company also wants to make predictions about future inventory needs.

Which solutions will meet these requirements? (Select TWO.)

Options:

A.

Use Amazon Redshift ML to generate inventory recommendations.

B.

Use SQL to invoke a remote SageMaker endpoint for prediction.

C.

Use Amazon Redshift ML to schedule regular data exports for offline model training.

D.

Use SageMaker Autopilot to create inventory management dashboards in Amazon Redshift.

E.

Use Amazon Redshift as a file storage system to archive old inventory management reports.

Buy Now
Questions 16

A company stores sensitive data in an Amazon Redshift table. The company needs to give specific users the ability to access the sensitive data. The company must not create duplication in the data.

Customer support users must be able to see the last four characters of the sensitive data. Audit users must be able to see the full value of the sensitive data. No other users can have the ability to access the sensitive information.

Which solution will meet these requirements?

Options:

A.

Create a dynamic data masking policy to allow access based on each user role. Create IAM roles that have specific access permissions. Attach the masking policy to the column that contains sensitive data.

B.

Enable metadata security on the Redshift cluster. Create IAM users and IAM roles for the customer support users and the audit users. Grant the IAM users and IAM roles permissions to view the metadata in the Redshift cluster.

C.

Create a row-level security policy to allow access based on each user role. Create IAM roles that have specific access permissions. Attach the security policy to the table.

D.

Create an AWS Glue job to redact the sensitive data and to load the data into a new Redshift table.

Buy Now
Questions 17

A company needs to set up a data catalog and metadata management for data sources that run in the AWS Cloud. The company will use the data catalog to maintain the metadata of all the objects that are in a set of data stores. The data stores include structured sources such as Amazon RDS and Amazon Redshift. The data stores also include semistructured sources such as JSON files and .xml files that are stored in Amazon S3.

The company needs a solution that will update the data catalog on a regular basis. The solution also must detect changes to the source metadata.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon Aurora as the data catalog. Create AWS Lambda functions that will connect to the data catalog. Configure the Lambda functions to gather the metadata information from multiple sources and to update the Aurora data catalog. Schedule the Lambda functions to run periodically.

B.

Use the AWS Glue Data Catalog as the central metadata repository. Use AWS Glue crawlers to connect to multiple data stores and to update the Data Catalog with metadata changes. Schedule the crawlers to run periodically to update the metadata catalog.

C.

Use Amazon DynamoDB as the data catalog. Create AWS Lambda functions that will connect to the data catalog. Configure the Lambda functions to gather the metadata information from multiple sources and to update the DynamoDB data catalog. Schedule the Lambda functions to run periodically.

D.

Use the AWS Glue Data Catalog as the central metadata repository. Extract the schema for Amazon RDS and Amazon Redshift sources, and build the Data Catalog. Use AWS Glue crawlers for data that is in Amazon S3 to infer the schema and to automatically update the Data Catalog.

Buy Now
Questions 18

A company stores employee data in Amazon Redshift A table named Employee uses columns named Region ID, Department ID, and Role ID as a compound sort key. Which queries will MOST increase the speed of a query by using a compound sort key of the table? (Select TWO.)

Options:

A.

Select * from Employee where Region ID='North America';

B.

Select * from Employee where Region ID='North America' and Department ID=20;

C.

Select * from Employee where Department ID=20 and Region ID='North America';

D.

Select " from Employee where Role ID=50;

E.

Select * from Employee where Region ID='North America' and Role ID=50;

Buy Now
Questions 19

A company stores customer records in Amazon S3. The company must not delete or modify the customer record data for 7 years after each record is created. The root user also must not have the ability to delete or modify the data.

A data engineer wants to use S3 Object Lock to secure the data.

Which solution will meet these requirements?

Options:

A.

Enable governance mode on the S3 bucket. Use a default retention period of 7 years.

B.

Enable compliance mode on the S3 bucket. Use a default retention period of 7 years.

C.

Place a legal hold on individual objects in the S3 bucket. Set the retention period to 7 years.

D.

Set the retention period for individual objects in the S3 bucket to 7 years.

Buy Now
Questions 20

A company stores daily records of the financial performance of investment portfolios in .csv format in an Amazon S3 bucket. A data engineer uses AWS Glue crawlers to crawl the S3 data.

The data engineer must make the S3 data accessible daily in the AWS Glue Data Catalog.

Which solution will meet these requirements?

Options:

A.

Create an IAM role that includes the AmazonS3FullAccess policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Create a daily schedule to run the crawler. Configure the output destination to a new path in the existing S3 bucket.

B.

Create an IAM role that includes the AWSGlueServiceRole policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Create a daily schedule to run the crawler. Specify a database name for the output.

C.

Create an IAM role that includes the AmazonS3FullAccess policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Allocate data processing units (DPUs) to run the crawler every day. Specify a database name for the output.

D.

Create an IAM role that includes the AWSGlueServiceRole policy. Associate the role with the crawler. Specify the S3 bucket path of the source data as the crawler's data store. Allocate data processing units (DPUs) to run the crawler every day. Configure the output destination to a new path in the existing S3 bucket.

Buy Now
Questions 21

A company has a frontend ReactJS website that uses Amazon API Gateway to invoke REST APIs. The APIs perform the functionality of the website. A data engineer needs to write a Python script that can be occasionally invoked through API Gateway. The code must return results to API Gateway.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Deploy a custom Python script on an Amazon Elastic Container Service (Amazon ECS) cluster.

B.

Create an AWS Lambda Python function with provisioned concurrency.

C.

Deploy a custom Python script that can integrate with API Gateway on Amazon Elastic Kubernetes Service (Amazon EKS).

D.

Create an AWS Lambda function. Ensure that the function is warm by scheduling an Amazon EventBridge rule to invoke the Lambda function every 5 minutes by using mock events.

Buy Now
Questions 22

A company has an Amazon Redshift data warehouse that users access by using a variety of IAM roles. More than 100 users access the data warehouse every day.

The company wants to control user access to the objects based on each user's job role, permissions, andhow sensitive the data is.

Which solution will meet these requirements?

Options:

A.

Use the role-based access control (RBAC) feature of Amazon Redshift.

B.

Use the row-level security (RLS) feature of Amazon Redshift.

C.

Use the column-level security (CLS) feature of Amazon Redshift.

D.

Use dynamic data masking policies in Amazon Redshift.

Buy Now
Questions 23

A company uses AWS Glue jobs to implement several data pipelines. The pipelines are critical to the company.

The company needs to implement a monitoring mechanism that will alert stakeholders if the pipelines fail.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Create an Amazon EventBridge rule to match AWS Glue job failure events. Configure the rule to target an AWS Lambda function to process events. Configure the function to send notifications to an Amazon Simple Notification Service (Amazon SNS) topic.

B.

Configure an Amazon CloudWatch Logs log group for the AWS Glue jobs. Create an Amazon EventBridge rule to match new log creation events in the log group. Configure the rule to target an AWS Lambda function that reads the logs and sends notifications to an Amazon Simple Notification Service (Amazon SNS) topic if AWS Glue job failure logs are present.

C.

Create an Amazon EventBridge rule to match AWS Glue job failure events. Define an Amazon CloudWatch metric based on the EventBridge rule. Set up a CloudWatch alarm based on the metric to send notifications to an Amazon Simple Notification Service (Amazon SNS) topic.

D.

Configure an Amazon CloudWatch Logs log group for the AWS Glue jobs. Create an Amazon EventBridge rule to match new log creation events in the log group. Configure the rule to send notifications to an Amazon Simple Notification Service (Amazon SNS) topic.

Buy Now
Questions 24

A data engineer is launching an Amazon EMR duster. The data that the data engineer needs to load into the new cluster is currently in an Amazon S3 bucket. The data engineer needs to ensure that data is encrypted both at rest and in transit.

The data that is in the S3 bucket is encrypted by an AWS Key Management Service (AWS KMS) key. The data engineer has an Amazon S3 path that has a Privacy Enhanced Mail (PEM) file.

Which solution will meet these requirements?

Options:

A.

Create an Amazon EMR security configuration. Specify the appropriate AWS KMS key for at-rest encryption for the S3 bucket. Create a second security configuration. Specify the Amazon S3 path of the PEM file for in-transit encryption. Create the EMR cluster, and attach both security configurations to the cluster.

B.

Create an Amazon EMR security configuration. Specify the appropriate AWS KMS key for local disk encryption for the S3 bucket. Specify the Amazon S3 path of the PEM file for in-transit encryption. Use the security configuration during EMR cluster creation.

C.

Create an Amazon EMR security configuration. Specify the appropriate AWS KMS key for at-rest encryption for the S3 bucket. Specify the Amazon S3 path of the PEM file for in-transit encryption. Use the security configuration during EMR cluster creation.

D.

Create an Amazon EMR security configuration. Specify the appropriate AWS KMS key for at-rest encryption for the S3 bucket. Specify the Amazon S3 path of the PEM file for in-transit encryption. Create the EMR cluster, and attach the security configuration to the cluster.

Buy Now
Questions 25

A data engineer needs to schedule a workflow that runs a set of AWS Glue jobs every day. The data engineer does not require the Glue jobs to run or finish at a specific time.

Which solution will run the Glue jobs in the MOST cost-effective way?

Options:

A.

Choose the FLEX execution class in the Glue job properties.

B.

Use the Spot Instance type in Glue job properties.

C.

Choose the STANDARD execution class in the Glue job properties.

D.

Choose the latest version in the GlueVersion field in the Glue job properties.

Buy Now
Questions 26

A company uses Amazon RDS for MySQL as the database for a critical application. The database workload is mostly writes, with a small number of reads.

A data engineer notices that the CPU utilization of the DB instance is very high. The high CPU utilization is slowing down the application. The data engineer must reduce the CPU utilization of the DB Instance.

Which actions should the data engineer take to meet this requirement? (Choose two.)

Options:

A.

Use the Performance Insights feature of Amazon RDS to identify queries that have high CPU utilization. Optimize the problematic queries.

B.

Modify the database schema to include additional tables and indexes.

C.

Reboot the RDS DB instance once each week.

D.

Upgrade to a larger instance size.

E.

Implement caching to reduce the database query load.

Buy Now
Questions 27

A company receives .csv files that contain physical address data. The data is in columns that have the following names: Door_No, Street_Name, City, and Zip_Code. The company wants to create a single column to store these values in the following format:

Which solution will meet this requirement with the LEAST coding effort?

Options:

A.

Use AWS Glue DataBrew to read the files. Use the NEST TO ARRAY transformation to create the new column.

B.

Use AWS Glue DataBrew to read the files. Use the NEST TO MAP transformation to create the new column.

C.

Use AWS Glue DataBrew to read the files. Use the PIVOT transformation to create the new column.

D.

Write a Lambda function in Python to read the files. Use the Python data dictionary type to create the new column.

Buy Now
Questions 28

A company extracts approximately 1 TB of data every day from data sources such as SAP HANA, Microsoft SQL Server, MongoDB, Apache Kafka, and Amazon DynamoDB. Some of the data sources have undefined data schemas or data schemas that change.

A data engineer must implement a solution that can detect the schema for these data sources. The solution must extract, transform, and load the data to an Amazon S3 bucket. The company has a service level agreement (SLA) to load the data into the S3 bucket within 15 minutes of data creation.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon EMR to detect the schema and to extract, transform, and load the data into the S3 bucket. Create a pipeline in Apache Spark.

B.

Use AWS Glue to detect the schema and to extract, transform, and load the data into the S3 bucket. Create a pipeline in Apache Spark.

C.

Create a PvSpark proqram in AWS Lambda to extract, transform, and load the data into the S3 bucket.

D.

Create a stored procedure in Amazon Redshift to detect the schema and to extract, transform, and load the data into a Redshift Spectrum table. Access the table from Amazon S3.

Buy Now
Questions 29

A company has an application that uses a microservice architecture. The company hosts the application on an Amazon Elastic Kubernetes Services (Amazon EKS) cluster.

The company wants to set up a robust monitoring system for the application. The company needs to analyze the logs from the EKS cluster and the application. The company needs to correlate the cluster's logs with the application's traces to identify points of failure in the whole application request flow.

Which combination of steps will meet these requirements with the LEAST development effort? (Select TWO.)

Options:

A.

Use FluentBit to collect logs. Use OpenTelemetry to collect traces.

B.

Use Amazon CloudWatch to collect logs. Use Amazon Kinesis to collect traces.

C.

Use Amazon CloudWatch to collect logs. Use Amazon Managed Streaming for Apache Kafka (Amazon MSK) to collect traces.

D.

Use Amazon OpenSearch to correlate the logs and traces.

E.

Use AWS Glue to correlate the logs and traces.

Buy Now
Questions 30

A company currently uses a provisioned Amazon EMR cluster that includes general purpose Amazon EC2 instances. The EMR cluster uses EMR managed scaling betweenone to five task nodes for the company's long-running Apache Spark extract, transform, and load (ETL) job. The company runs the ETL job every day.

When the company runs the ETL job, the EMR cluster quickly scales up to five nodes. The EMR cluster often reaches maximum CPU usage, but the memory usage remains under 30%.

The company wants to modify the EMR cluster configuration to reduce the EMR costs to run the daily ETL job.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Increase the maximum number of task nodes for EMR managed scaling to 10.

B.

Change the task node type from general purpose EC2 instances to memory optimized EC2 instances.

C.

Switch the task node type from general purpose EC2 instances to compute optimized EC2 instances.

D.

Reduce the scaling cooldown period for the provisioned EMR cluster.

Buy Now
Questions 31

A data engineer must orchestrate a data pipeline that consists of one AWS Lambda function and one AWS Glue job. The solution must integrate with AWS services.

Which solution will meet these requirements with the LEAST management overhead?

Options:

A.

Use an AWS Step Functions workflow that includes a state machine. Configure the state machine to run the Lambda function and then the AWS Glue job.

B.

Use an Apache Airflow workflow that is deployed on an Amazon EC2 instance. Define a directed acyclic graph (DAG) in which the first task is to call the Lambda function and the second task is to call the AWS Glue job.

C.

Use an AWS Glue workflow to run the Lambda function and then the AWS Glue job.

D.

Use an Apache Airflow workflow that is deployed on Amazon Elastic Kubernetes Service (Amazon EKS). Define a directed acyclic graph (DAG) in which the first task is to call the Lambda function and the second task is to call the AWS Glue job.

Buy Now
Questions 32

A company has an application that uses an Amazon API Gateway REST API and an AWS Lambda function to retrieve data from an Amazon DynamoDB instance. Users recently reported intermittent high latency in the application's response times. A data engineer finds that the Lambda function experiences frequent throttling when the company's other Lambda functions experience increased invocations.

The company wants to ensure the API's Lambda function operates without being affected by other Lambda functions.

Which solution will meet this requirement MOST cost-effectively?

Options:

A.

Increase the number of read capacity unit (RCU) in DynamoDB.

B.

Configure provisioned concurrency for the Lambda function.

C.

Configure reserved concurrency for the Lambda function.

D.

Increase the Lambda function timeout and allocated memory.

Buy Now
Questions 33

A company uses AWS Glue Data Catalog to index data that is uploaded to an Amazon S3 bucket every day. The company uses a daily batch processes in an extract, transform, and load (ETL) pipeline to upload data from external sources into the S3 bucket.

The company runs a daily report on the S3 data. Some days, the company runs the report before all the daily data has been uploaded to the S3 bucket. A data engineer must be able to send a message that identifies any incomplete data to an existing Amazon Simple Notification Service (Amazon SNS) topic.

Which solution will meet this requirement with the LEAST operational overhead?

Options:

A.

Create data quality checks for the source datasets that the daily reports use. Create a new AWS managed Apache Airflow cluster. Run the data quality checks by using Airflow tasks that run data quality queries on the columns data type and the presence of nullvalues. Configure Airflow Directed Acyclic Graphs (DAGs) to send an email notification that informs the data engineer about the incomplete datasets to the SNS topic.

B.

Create data quality checks on the source datasets that the daily reports use. Create a new Amazon EMR cluster. Use Apache Spark SQL to create Apache Spark jobs in the EMR cluster that run data quality queries on the columns data type and the presence of null values. Orchestrate the ETL pipeline by using an AWS Step Functions workflow. Configure the workflow to send an email notification that informs the data engineer about the incomplete da

C.

Create data quality checks on the source datasets that the daily reports use. Create data quality actions by using AWS Glue workflows to confirm the completeness and consistency of the datasets. Configure the data quality actions to create an event in Amazon EventBridge if a dataset is incomplete. Configure EventBridge to send the event that informs the data engineer about the incomplete datasets to the Amazon SNS topic.

D.

Create AWS Lambda functions that run data quality queries on the columns data type and the presence of null values. Orchestrate the ETL pipeline by using an AWS Step Functions workflow that runs the Lambda functions. Configure the Step Functions workflow to send an email notification that informs the data engineer about the incomplete datasets to the SNS topic.

Buy Now
Questions 34

A company uses Amazon S3 as a data lake. The company sets up a data warehouse by using a multi-node Amazon Redshift cluster. The company organizes the data files in the data lake based on the data source of each data file.

The company loads all the data files into one table in the Redshift cluster by using a separate COPY command for each data file location. This approach takes a long time to load all the data files into the table. The company must increase the speed of the data ingestion. The company does not want to increase the cost of the process.

Which solution will meet these requirements?

Options:

A.

Use a provisioned Amazon EMR cluster to copy all the data files into one folder. Use a COPY command to load the data into Amazon Redshift.

B.

Load all the data files in parallel into Amazon Aurora. Run an AWS Glue job to load the data into Amazon Redshift.

C.

Use an AWS Glue job to copy all the data files into one folder. Use a COPY command to load the data into Amazon Redshift.

D.

Create a manifest file that contains the data file locations. Use a COPY command to load the data into Amazon Redshift.

Buy Now
Questions 35

A company is developing an application that runs on Amazon EC2 instances. Currently, the data that the application generates is temporary. However, the company needs to persist the data, even if the EC2 instances are terminated.

A data engineer must launch new EC2 instances from an Amazon Machine Image (AMI) and configure the instances to preserve the data.

Which solution will meet this requirement?

Options:

A.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume that contains the application data. Apply the default settings to the EC2 instances.

B.

Launch new EC2 instances by using an AMI that is backed by a root Amazon Elastic Block Store (Amazon EBS) volume that contains the application data. Apply the default settings to the EC2 instances.

C.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume. Attach an Amazon Elastic Block Store (Amazon EBS) volume to contain the application data. Apply the default settings to the EC2 instances.

D.

Launch new EC2 instances by using an AMI that is backed by an Amazon Elastic Block Store (Amazon EBS) volume. Attach an additional EC2 instance store volume to contain the application data. Apply the default settings to the EC2 instances.

Buy Now
Questions 36

A company wants to implement real-time analytics capabilities. The company wants to use Amazon Kinesis Data Streams and Amazon Redshift to ingest and process streaming data at the rate of several gigabytes per second. The company wants to derive near real-time insights by using existing business intelligence (BI) and analytics tools.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Kinesis Data Streams to stage data in Amazon S3. Use the COPY command to load data from Amazon S3 directly into Amazon Redshift to make the data immediately available for real-time analysis.

B.

Access the data from Kinesis Data Streams by using SQL queries. Create materialized views directly on top of the stream. Refresh the materialized views regularly to query the most recent stream data.

C.

Create an external schema in Amazon Redshift to map the data from Kinesis Data Streams to an Amazon Redshift object. Create a materialized view to read data from the stream. Set the materialized view to auto refresh.

D.

Connect Kinesis Data Streams to Amazon Kinesis Data Firehose. Use Kinesis Data Firehose to stage the data in Amazon S3. Use the COPY command to load the data from Amazon S3 to a table in Amazon Redshift.

Buy Now
Questions 37

A company plans to use Amazon Kinesis Data Firehose to store data in Amazon S3. The source data consists of 2 MB csv files. The company must convert the .csv files to JSON format. The company must store the files in Apache Parquet format.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Use Kinesis Data Firehose to convert the csv files to JSON. Use an AWS Lambda function to store the files in Parquet format.

B.

Use Kinesis Data Firehose to convert the csv files to JSON and to store the files in Parquet format.

C.

Use Kinesis Data Firehose to invoke an AWS Lambda function that transforms the .csv files to JSON and stores the files in Parquet format.

D.

Use Kinesis Data Firehose to invoke an AWS Lambda function that transforms the .csv files to JSON. Use Kinesis Data Firehose to store the files in Parquet format.

Buy Now
Questions 38

A company uses Amazon S3 to store data and Amazon QuickSight to create visualizations.

The company has an S3 bucket in an AWS account named Hub-Account. The S3 bucket is encrypted by an AWS Key Management Service (AWS KMS) key. The company's QuickSight instance is in a separate account named BI-Account

The company updates the S3 bucket policy to grant access to the QuickSight service role. The company wants to enable cross-account access to allow QuickSight to interact with the S3 bucket.

Which combination of steps will meet this requirement? (Select TWO.)

Options:

A.

Use the existing AWS KMS key to encrypt connections from QuickSight to the S3 bucket.

B.

Add the 53 bucket as a resource that the QuickSight service role can access.

C.

Use AWS Resource Access Manager (AWS RAM) to share the S3 bucket with the Bl-Account account.

D.

Add an IAM policy to the QuickSight service role to give QuickSight access to the KMS key that encrypts the S3 bucket.

E.

Add the KMS key as a resource that the QuickSight service role can access.

Buy Now
Questions 39

A company receives a data file from a partner each day in an Amazon S3 bucket. The company uses a daily AW5 Glue extract, transform, and load (ETL) pipeline to clean and transform each data file. The output of the ETL pipeline is written to a CSV file named Dairy.csv in a second 53 bucket.

Occasionally, the daily data file is empty or is missing values for required fields. When the file is missing data, the company can use the previous day's CSV file.

A data engineer needs to ensure that the previous day's data file is overwritten only if the new daily file is complete and valid.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Invoke an AWS Lambda function to check the file for missing data and to fill in missing values in required fields.

B.

Configure the AWS Glue ETL pipeline to use AWS Glue Data Quality rules. Develop rules in Data Quality Definition Language (DQDL) to check for missing values in required files and empty files.

C.

Use AWS Glue Studio to change the code in the ETL pipeline to fill in any missing values in the required fields with the most common values for each field.

D.

Run a SQL query in Amazon Athena to read the CSV file and drop missing rows. Copy the corrected CSV file to the second S3 bucket.

Buy Now
Questions 40

A company stores its processed data in an S3 bucket. The company has a strict data access policy. The company uses IAM roles to grant teams within the company different levels of access to the S3 bucket.

The company wants to receive notifications when a user violates the data access policy. Each notification must include the username of the user who violated the policy.

Which solution will meet these requirements?

Options:

A.

Use AWS Config rules to detect violations of the data access policy. Set up compliance alarms.

B.

Use Amazon CloudWatch metrics to gather object-level metrics. Set up CloudWatch alarms.

C.

Use AWS CloudTrail to track object-level events for the S3 bucket. Forward events to Amazon CloudWatch to set up CloudWatch alarms.

D.

Use Amazon S3 server access logs to monitor access to the bucket. Forward the access logs to an Amazon CloudWatch log group. Use metric filters on the log group to set up CloudWatch alarms.

Buy Now
Questions 41

A banking company uses an application to collect large volumes of transactional data. The company uses Amazon Kinesis Data Streams for real-time analytics. The company's application uses the PutRecord action to send data to Kinesis Data Streams.

A data engineer has observed network outages during certain times of day. The data engineer wants to configure exactly-once delivery for the entire processing pipeline.

Which solution will meet this requirement?

Options:

A.

Design the application so it can remove duplicates during processing by embedding a unique ID in each record at the source.

B.

Update the checkpoint configuration of the Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) data collection application to avoid duplicate processing of events.

C.

Design the data source so events are not ingested into Kinesis Data Streams multiple times.

D.

Stop using Kinesis Data Streams. Use Amazon EMR instead. Use Apache Flink and Apache Spark Streaming in Amazon EMR.

Buy Now
Questions 42

A company uses Amazon Athena for one-time queries against data that is in Amazon S3. The company has several use cases. The company must implement permission controls to separate query processes and access to query history among users, teams, and applications that are in the same AWS account.

Which solution will meet these requirements?

Options:

A.

Create an S3 bucket for each use case. Create an S3 bucket policy that grants permissions to appropriate individual IAM users. Apply the S3 bucket policy to the S3 bucket.

B.

Create an Athena workgroup for each use case. Apply tags to the workgroup. Create an 1AM policy that uses the tags to apply appropriate permissions to the workgroup.

C.

Create an JAM role for each use case. Assign appropriate permissions to the role for each use case. Associate the role with Athena.

D.

Create an AWS Glue Data Catalog resource policy that grants permissions to appropriate individual IAM users for each use case. Apply the resource policy to the specific tables that Athena uses.

Buy Now
Questions 43

A company is using Amazon Redshift to build a data warehouse solution. The company is loading hundreds of tiles into a tact table that is in a Redshift cluster.

The company wants the data warehouse solution to achieve the greatest possible throughput. The solution must use cluster resources optimally when the company loads data into the tact table.

Which solution will meet these requirements?

Options:

A.

Use multiple COPY commands to load the data into the Redshift cluster.

B.

Use S3DistCp to load multiple files into Hadoop Distributed File System (HDFS). Use an HDFS connector to ingest the data into the Redshift cluster.

C.

Use a number of INSERT statements equal to the number of Redshift cluster nodes. Load the data in parallel into each node.

D.

Use a single COPY command to load the data into the Redshift cluster.

Buy Now
Questions 44

A company needs to load customer data that comes from a third party into an Amazon Redshift data warehouse. The company stores order data and product data in the same data warehouse. The company wants to use the combined dataset to identify potential new customers.

A data engineer notices that one of the fields in the source data includes values that are in JSON format.

How should the data engineer load the JSON data into the data warehouse with the LEAST effort?

Options:

A.

Use the SUPER data type to store the data in the Amazon Redshift table.

B.

Use AWS Glue to flatten the JSON data and ingest it into the Amazon Redshift table.

C.

Use Amazon S3 to store the JSON data. Use Amazon Athena to query the data.

D.

Use an AWS Lambda function to flatten the JSON data. Store the data in Amazon S3.

Buy Now
Questions 45

A data engineer is building an automated extract, transform, and load (ETL) ingestion pipeline by using AWS Glue. The pipeline ingests compressed files that are in an Amazon S3 bucket. The ingestion pipeline must support incremental data processing.

Which AWS Glue feature should the data engineer use to meet this requirement?

Options:

A.

Workflows

B.

Triggers

C.

Job bookmarks

D.

Classifiers

Buy Now
Questions 46

A marketing company uses Amazon S3 to store marketing data. The company uses versioning in some buckets. The company runs several jobs to read and load data into the buckets.

To help cost-optimize its storage, the company wants to gather information about incomplete multipart uploads and outdated versions that are present in the S3 buckets.

Which solution will meet these requirements with the LEAST operational effort?

Options:

A.

Use AWS CLI to gather the information.

B.

Use Amazon S3 Inventory configurations reports to gather the information.

C.

Use the Amazon S3 Storage Lens dashboard to gather the information.

D.

Use AWS usage reports for Amazon S3 to gather the information.

Buy Now
Questions 47

A data engineer must ingest a source of structured data that is in .csv format into an Amazon S3 data lake. The .csv files contain 15 columns. Data analysts need to run Amazon Athena queries on one or two columns of the dataset. The data analysts rarely query the entire file.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use an AWS Glue PySpark job to ingest the source data into the data lake in .csv format.

B.

Create an AWS Glue extract, transform, and load (ETL) job to read from the .csv structured data source. Configure the job to ingest the data into the data lake in JSON format.

C.

Use an AWS Glue PySpark job to ingest the source data into the data lake in Apache Avro format.

D.

Create an AWS Glue extract, transform, and load (ETL) job to read from the .csv structured data source. Configure the job to write the data into the data lake in Apache Parquet format.

Buy Now
Questions 48

A company maintains an Amazon Redshift provisioned cluster that the company uses for extract, transform, and load (ETL) operations to support critical analysis tasks. A sales team within the company maintains a Redshift cluster that the sales team uses for business intelligence (BI) tasks.

The sales team recently requested access to the data that is in the ETL Redshift cluster so the team can perform weekly summary analysis tasks. The sales team needs to join data from the ETL cluster with data that is in the sales team's BI cluster.

The company needs a solution that will share the ETL cluster data with the sales team without interrupting the critical analysis tasks. The solution must minimize usage of the computing resources of the ETL cluster.

Which solution will meet these requirements?

Options:

A.

Set up the sales team Bl cluster as a consumer of the ETL cluster by using Redshift data sharing.

B.

Create materialized views based on the sales team's requirements. Grant the sales team direct access to the ETL cluster.

C.

Create database views based on the sales team's requirements. Grant the sales team direct access to the ETL cluster.

D.

Unload a copy of the data from the ETL cluster to an Amazon S3 bucket every week. Create an Amazon Redshift Spectrum table based on the content of the ETL cluster.

Buy Now
Questions 49

A retail company uses an Amazon Redshift data warehouse and an Amazon S3 bucket. The company ingests retail order data into the S3 bucket every day.

The company stores all order data at a single path within the S3 bucket. The data has more than 100 columns. The company ingests the order data from a third-party application that generates more than 30 files in CSV format every day. Each CSV file is between 50 and 70 MB in size.

The company uses Amazon Redshift Spectrum to run queries that select sets of columns. Users aggregate metrics based on daily orders. Recently, users have reported that the performance of the queries has degraded. A data engineer must resolve the performance issues for the queries.

Which combination of steps will meet this requirement with LEAST developmental effort? (Select TWO.)

Options:

A.

Configure the third-party application to create the files in a columnar format.

B.

Develop an AWS Glue ETL job to convert the multiple daily CSV files to one file for each day.

C.

Partition the order data in the S3 bucket based on order date.

D.

Configure the third-party application to create the files in JSON format.

E.

Load the JSON data into the Amazon Redshift table in a SUPER type column.

Buy Now
Questions 50

A data engineer must manage the ingestion of real-time streaming data into AWS. The data engineer wants to perform real-time analytics on the incoming streaming data by using time-based aggregations over a window of up to 30 minutes. The data engineer needs a solution that is highly fault tolerant.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use an AWS Lambda function that includes both the business and the analytics logic to perform time-based aggregations over a window of up to 30 minutes for the data in Amazon Kinesis Data Streams.

B.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to analyze the data that might occasionally contain duplicates by using multiple types of aggregations.

C.

Use an AWS Lambda function that includes both the business and the analytics logic to perform aggregations for a tumbling window of up to 30 minutes, based on the event timestamp.

D.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to analyze the data by using multiple types of aggregations to perform time-based analytics over a window of up to 30 minutes.

Buy Now
Questions 51

A company has a data lake in Amazon 53. The company uses AWS Glue to catalog data and AWS Glue Studio to implement data extract, transform, and load (ETL) pipelines.

The company needs to ensure that data quality issues are checked every time the pipelines run. A data engineer must enhance the existing pipelines to evaluate data quality rules based on predefined thresholds.

Which solution will meet these requirements with the LEAST implementation effort?

Options:

A.

Add a new transform that is defined by a SQL query to each Glue ETL job. Use the SQL query to implement a ruleset that includes the data quality rules that need to be evaluated.

B.

Add a new Evaluate Data Quality transform to each Glue ETL job. Use Data Quality Definition Language (DQDL) to implement a ruleset that includes the data quality rules that need to be evaluated.

C.

Add a new custom transform to each Glue ETL job. Use the PyDeequ library to implement a ruleset that includes the data quality rules that need to be evaluated.

D.

Add a new custom transform to each Glue ETL job. Use the Great Expectations library to implement a ruleset that includes the data quality rules that need to be evaluated.

Buy Now
Questions 52

A company needs to build a data lake in AWS. The company must provide row-level data access and column-level data access to specific teams. The teams will access the data by using Amazon Athena, Amazon Redshift Spectrum, and Apache Hive from Amazon EMR.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon S3 for data lake storage. Use S3 access policies to restrict data access by rows and columns. Provide data access through Amazon S3.

B.

Use Amazon S3 for data lake storage. Use Apache Ranger through Amazon EMR to restrict data access by rows and columns. Provide data access by using Apache Pig.

C.

Use Amazon Redshift for data lake storage. Use Redshift security policies to restrict data access by rows and columns. Provide data access by using Apache Spark and Amazon Athena federated queries.

D.

Use Amazon S3 for data lake storage. Use AWS Lake Formation to restrict data access by rows and columns. Provide data access through AWS Lake Formation.

Buy Now
Exam Name: AWS Certified Data Engineer - Associate (DEA-C01)
Last Update: Jul 1, 2025
Questions: 174
Data-Engineer-Associate pdf

Data-Engineer-Associate PDF

$29.75  $84.99
Data-Engineer-Associate Engine

Data-Engineer-Associate Testing Engine

$35  $99.99
Data-Engineer-Associate PDF + Engine

Data-Engineer-Associate PDF + Testing Engine

$47.25  $134.99