Big Halloween Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: clap70

Databricks-Certified-Professional-Data-Engineer Databricks Certified Data Engineer Professional Exam Questions and Answers

Questions 4

A platform engineer is creating catalogs and schemas for the development team to use.

The engineer has created an initial catalog, catalog_A, and initial schema, schema_A. The engineer has also granted USE CATALOG, USE

SCHEMA, and CREATE TABLE to the development team so that the engineer can begin populating the schema with new tables.

Despite being owner of the catalog and schema, the engineer noticed that they do not have access to the underlying tables in Schema_A.

What explains the engineer's lack of access to the underlying tables?

Options:

A.

The platform engineer needs to execute a REFRESH statement as the table permissions did not automatically update for owners.

B.

Users granted with USE CATALOG can modify the owner's permissions to downstream tables.

C.

The owner of the schema does not automatically have permission to tables within the schema, but can grant them to themselves at any point.

D.

Permissions explicitly given by the table creator are the only way the Platform Engineer could access the underlying tables in their

schema.

Buy Now
Questions 5

What is a method of installing a Python package scoped at the notebook level to all nodes in the currently active cluster?

Options:

A.

Use &Pip install in a notebook cell

B.

Run source env/bin/activate in a notebook setup script

C.

Install libraries from PyPi using the cluster UI

D.

Use &sh install in a notebook cell

Buy Now
Questions 6

A DLT pipeline includes the following streaming tables:

Raw_lot ingest raw device measurement data from a heart rate tracking device.

Bgm_stats incrementally computes user statistics based on BPM measurements from raw_lot.

How can the data engineer configure this pipeline to be able to retain manually deleted or updated records in the raw_iot table while recomputing the downstream table when a pipeline update is run?

Options:

A.

Set the skipChangeCommits flag to true on bpm_stats

B.

Set the SkipChangeCommits flag to true raw_lot

C.

Set the pipelines, reset, allowed property to false on bpm_stats

D.

Set the pipelines, reset, allowed property to false on raw_iot

Buy Now
Questions 7

A data engineer needs to capture pipeline settings from an existing in the workspace, and use them to create and version a JSON file to create a new pipeline.

Which command should the data engineer enter in a web terminal configured with the Databricks CLI?

Options:

A.

Use the get command to capture the settings for the existing pipeline; remove the pipeline_id and rename the pipeline; use this in a create command

B.

Stop the existing pipeline; use the returned settings in a reset command

C.

Use the alone command to create a copy of an existing pipeline; use the get JSON command to get the pipeline definition; save this to git

D.

Use list pipelines to get the specs for all pipelines; get the pipeline spec from the return results parse and use this to create a pipeline

Buy Now
Questions 8

Two of the most common data locations on Databricks are the DBFS root storage and external object storage mounted with dbutils.fs.mount().

Which of the following statements is correct?

Options:

A.

DBFS is a file system protocol that allows users to interact with files stored in object storage using syntax and guarantees similar to Unix file systems.

B.

By default, both the DBFS root and mounted data sources are only accessible to workspace administrators.

C.

The DBFS root is the most secure location to store data, because mounted storage volumes must have full public read and write permissions.

D.

Neither the DBFS root nor mounted storage can be accessed when using %sh in a Databricks notebook.

E.

The DBFS root stores files in ephemeral block volumes attached to the driver, while mounted directories will always persist saved data to external storage between sessions.

Buy Now
Questions 9

The data engineering team is migrating an enterprise system with thousands of tables and views into the Lakehouse. They plan to implement the target architecture using a series of bronze, silver, and gold tables. Bronze tables will almost exclusively be used by production data engineering workloads, while silver tables will be used to support both data engineering and machine learning workloads. Gold tables will largely serve business intelligence and reporting purposes. While personal identifying information (PII) exists in all tiers of data, pseudonymization and anonymization rules are in place for all data at the silver and gold levels.

The organization is interested in reducing security concerns while maximizing the ability to collaborate across diverse teams.

Which statement exemplifies best practices for implementing this system?

Options:

A.

Isolating tables in separate databases based on data quality tiers allows for easy permissions management through database ACLs and allows physical separation of default storage locations for managed tables.

B.

Because databases on Databricks are merely a logical construct, choices around database organization do not impact security or discoverability in the Lakehouse.

C.

Storinq all production tables in a single database provides a unified view of all data assets available throughout the Lakehouse, simplifying discoverability by granting all users view privileges on this database.

D.

Working in the default Databricks database provides the greatest security when working with managed tables, as these will be created in the DBFS root.

E.

Because all tables must live in the same storage containers used for the database they're created in, organizations should be prepared to create between dozens and thousands of databases depending on their data isolation requirements.

Buy Now
Questions 10

A production cluster has 3 executor nodes and uses the same virtual machine type for the driver and executor.

When evaluating the Ganglia Metrics for this cluster, which indicator would signal a bottleneck caused by code executing on the driver?

Options:

A.

The five Minute Load Average remains consistent/flat

B.

Bytes Received never exceeds 80 million bytes per second

C.

Total Disk Space remains constant

D.

Network I/O never spikes

E.

Overall cluster CPU utilization is around 25%

Buy Now
Questions 11

When evaluating the Ganglia Metrics for a given cluster with 3 executor nodes, which indicator would signal proper utilization of the VM's resources?

Options:

A.

The five Minute Load Average remains consistent/flat

B.

Bytes Received never exceeds 80 million bytes per second

C.

Network I/O never spikes

D.

Total Disk Space remains constant

E.

CPU Utilization is around 75%

Buy Now
Questions 12

A Delta table of weather records is partitioned by date and has the below schema:

date DATE, device_id INT, temp FLOAT, latitude FLOAT, longitude FLOAT

To find all the records from within the Arctic Circle, you execute a query with the below filter:

latitude > 66.3

Which statement describes how the Delta engine identifies which files to load?

Options:

A.

All records are cached to an operational database and then the filter is applied

B.

The Parquet file footers are scanned for min and max statistics for the latitude column

C.

All records are cached to attached storage and then the filter is applied

D.

The Delta log is scanned for min and max statistics for the latitude column

E.

The Hive metastore is scanned for min and max statistics for the latitude column

Buy Now
Questions 13

A Structured Streaming job deployed to production has been experiencing delays during peak hours of the day. At present, during normal execution, each microbatch of data is processed in less than 3 seconds. During peak hours of the day, execution time for each microbatch becomes very inconsistent, sometimes exceeding 30 seconds. The streaming write is currently configured with a trigger interval of 10 seconds.

Holding all other variables constant and assuming records need to be processed in less than 10 seconds, which adjustment will meet the requirement?

Options:

A.

Decrease the trigger interval to 5 seconds; triggering batches more frequently allows idle executors to begin processing the next batch while longer running tasks from previous batches finish.

B.

Increase the trigger interval to 30 seconds; setting the trigger interval near the maximum execution time observed for each batch is always best practice to ensure no records are dropped.

C.

The trigger interval cannot be modified without modifying the checkpoint directory; to maintain the current stream state, increase the number of shuffle partitions to maximize parallelism.

D.

Use the trigger once option and configure a Databricks job to execute the query every 10 seconds; this ensures all backlogged records are processed with each batch.

E.

Decrease the trigger interval to 5 seconds; triggering batches more frequently may prevent records from backing up and large batches from causing spill.

Buy Now
Questions 14

The business intelligence team has a dashboard configured to track various summary metrics for retail stories. This includes total sales for the previous day alongside totals and averages for a variety of time periods. The fields required to populate this dashboard have the following schema:

For Demand forecasting, the Lakehouse contains a validated table of all itemized sales updated incrementally in near real-time. This table named products_per_order, includes the following fields:

Because reporting on long-term sales trends is less volatile, analysts using the new dashboard only require data to be refreshed once daily. Because the dashboard will be queried interactively by many users throughout a normal business day, it should return results quickly and reduce total compute associated with each materialization.

Which solution meets the expectations of the end users while controlling and limiting possible costs?

Options:

A.

Use the Delta Cache to persists the products_per_order table in memory to quickly the dashboard with each query.

B.

Populate the dashboard by configuring a nightly batch job to save the required to quickly update the dashboard with each query.

C.

Use Structure Streaming to configure a live dashboard against the products_per_order table within a Databricks notebook.

D.

Define a view against the products_per_order table and define the dashboard against this view.

Buy Now
Questions 15

The downstream consumers of a Delta Lake table have been complaining about data quality issues impacting performance in their applications. Specifically, they have complained that invalid latitude and longitude values in the activity_details table have been breaking their ability to use other geolocation processes.

A junior engineer has written the following code to add CHECK constraints to the Delta Lake table:

A senior engineer has confirmed the above logic is correct and the valid ranges for latitude and longitude are provided, but the code fails when executed.

Which statement explains the cause of this failure?

Options:

A.

Because another team uses this table to support a frequently running application, two-phase locking is preventing the operation from committing.

B.

The activity details table already exists; CHECK constraints can only be added during initial table creation.

C.

The activity details table already contains records that violate the constraints; all existing data must pass CHECK constraints in order to add them to an existing table.

D.

The activity details table already contains records; CHECK constraints can only be added prior to inserting values into a table.

E.

The current table schema does not contain the field valid coordinates; schema evolution will need to be enabled before altering the table to add a constraint.

Buy Now
Questions 16

A Delta Lake table representing metadata about content from user has the following schema:

user_id LONG, post_text STRING, post_id STRING, longitude FLOAT, latitude FLOAT, post_time TIMESTAMP, date DATE

Based on the above schema, which column is a good candidate for partitioning the Delta Table?

Options:

A.

Date

B.

Post_id

C.

User_id

D.

Post_time

Buy Now
Questions 17

A data engineer is performing a join operating to combine values from a static userlookup table with a streaming DataFrame streamingDF.

Which code block attempts to perform an invalid stream-static join?

Options:

A.

userLookup.join(streamingDF, ["userid"], how="inner")

B.

streamingDF.join(userLookup, ["user_id"], how="outer")

C.

streamingDF.join(userLookup, ["user_id”], how="left")

D.

streamingDF.join(userLookup, ["userid"], how="inner")

E.

userLookup.join(streamingDF, ["user_id"], how="right")

Buy Now
Questions 18

The data engineer team has been tasked with configured connections to an external database that does not have a supported native connector with Databricks. The external database already has data security configured by group membership. These groups map directly to user group already created in Databricks that represent various teams within the company.

A new login credential has been created for each group in the external database. The Databricks Utilities Secrets module will be used to make these credentials available to Databricks users.

Assuming that all the credentials are configured correctly on the external database and group membership is properly configured on Databricks, which statement describes how teams can be granted the minimum necessary access to using these credentials?

Options:

A.

‘’Read’’ permissions should be set on a secret key mapped to those credentials that will be used by a given team.

B.

No additional configuration is necessary as long as all users are configured as administrators in the workspace where secrets have been added.

C.

“Read” permissions should be set on a secret scope containing only those credentials that will be used by a given team.

D.

“Manage” permission should be set on a secret scope containing only those credentials that will be used by a given team.

Buy Now
Questions 19

The data engineering team maintains the following code:

Assuming that this code produces logically correct results and the data in the source tables has been de-duplicated and validated, which statement describes what will occur when this code is executed?

Options:

A.

A batch job will update the enriched_itemized_orders_by_account table, replacing only those rows that have different values than the current version of the table, using accountID as the primary key.

B.

The enriched_itemized_orders_by_account table will be overwritten using the current valid version of data in each of the three tables referenced in the join logic.

C.

An incremental job will leverage information in the state store to identify unjoined rows in the source tables and write these rows to the enriched_iteinized_orders_by_account table.

D.

An incremental job will detect if new rows have been written to any of the source tables; if new rows are detected, all results will be recalculated and used to overwrite the enriched_itemized_orders_by_account table.

E.

No computation will occur until enriched_itemized_orders_by_account is queried; upon query materialization, results will be calculated using the current valid version of data in each of the three tables referenced in the join logic.

Buy Now
Questions 20

A data team's Structured Streaming job is configured to calculate running aggregates for item sales to update a downstream marketing dashboard. The marketing team has introduced a new field to track the number of times this promotion code is used for each item. A junior data engineer suggests updating the existing query as follows: Note that proposed changes are in bold.

Which step must also be completed to put the proposed query into production?

Options:

A.

Increase the shuffle partitions to account for additional aggregates

B.

Specify a new checkpointlocation

C.

Run REFRESH TABLE delta, /item_agg'

D.

Remove .option (mergeSchema', true') from the streaming write

Buy Now
Questions 21

Which statement describes Delta Lake optimized writes?

Options:

A.

A shuffle occurs prior to writing to try to group data together resulting in fewer files instead of each executor writing multiple files based on directory partitions.

B.

Optimized writes logical partitions instead of directory partitions partition boundaries are only represented in metadata fewer small files are written.

C.

An asynchronous job runs after the write completes to detect if files could be further compacted; yes, an OPTIMIZE job is executed toward a default of 1 GB.

D.

Before a job cluster terminates, OPTIMIZE is executed on all tables modified during the most recent job.

Buy Now
Questions 22

A data engineer is testing a collection of mathematical functions, one of which calculates the area under a curve as described by another function.

Which kind of the test does the above line exemplify?

Options:

A.

Integration

B.

Unit

C.

Manual

D.

functional

Buy Now
Questions 23

When scheduling Structured Streaming jobs for production, which configuration automatically recovers from query failures and keeps costs low?

Options:

A.

Cluster: New Job Cluster;

Retries: Unlimited;

Maximum Concurrent Runs: Unlimited

B.

Cluster: New Job Cluster;

Retries: None;

Maximum Concurrent Runs: 1

C.

Cluster: Existing All-Purpose Cluster;

Retries: Unlimited;

Maximum Concurrent Runs: 1

D.

Cluster: New Job Cluster;

Retries: Unlimited;

Maximum Concurrent Runs: 1

E.

Cluster: Existing All-Purpose Cluster;

Retries: None;

Maximum Concurrent Runs: 1

Buy Now
Questions 24

A data engineer wants to create a cluster using the Databricks CLI for a big ETL pipeline. The cluster should have five workers, one driver of type i3.xlarge, and should use the '14.3.x-scala2.12' runtime.

Which command should the data engineer use?

Options:

A.

databricks clusters create 14.3.x-scala2.12 --num-workers 5 --node-type-id i3.xlarge --cluster-name DataEngineer_cluster

B.

databricks clusters add 14.3.x-scala2.12 --num-workers 5 --node-type-id i3.xlarge --cluster-name Data Engineer_cluster

C.

databricks compute add 14.3.x-scala2.12 --num-workers 5 --node-type-id i3.xlarge --cluster-name Data Engineer_cluster

D.

databricks compute create 14.3.x-scala2.12 --num-workers 5 --node-type-id i3.xlarge --cluster-name Data Engineer_cluster

Buy Now
Questions 25

A user wants to use DLT expectations to validate that a derived table report contains all records from the source, included in the table validation_copy.

The user attempts and fails to accomplish this by adding an expectation to the report table definition.

Which approach would allow using DLT expectations to validate all expected records are present in this table?

Options:

A.

Define a SQL UDF that performs a left outer join on two tables, and check if this returns null values for report key values in a DLT expectation for the report table.

B.

Define a function that performs a left outer join on validation_copy and report and report, and check against the result in a DLT expectation for the report table

C.

Define a temporary table that perform a left outer join on validation_copy and report, and define an expectation that no report key values are null

D.

Define a view that performs a left outer join on validation_copy and report, and reference this view in DLT expectations for the report table

Buy Now
Questions 26

A new data engineer notices that a critical field was omitted from an application that writes its Kafka source to Delta Lake. This happened even though the critical field was in the Kafka source. That field was further missing from data written to dependent, long-term storage. The retention threshold on the Kafka service is seven days. The pipeline has been in production for three months.

Which describes how Delta Lake can help to avoid data loss of this nature in the future?

Options:

A.

The Delta log and Structured Streaming checkpoints record the full history of the Kafka producer.

B.

Delta Lake schema evolution can retroactively calculate the correct value for newly added fields, as long as the data was in the original source.

C.

Delta Lake automatically checks that all fields present in the source data are included in the ingestion layer.

D.

Data can never be permanently dropped or deleted from Delta Lake, so data loss is not possible under any circumstance.

E.

Ingestine all raw data and metadata from Kafka to a bronze Delta table creates a permanent, replayable history of the data state.

Buy Now
Questions 27

A data pipeline uses Structured Streaming to ingest data from kafka to Delta Lake. Data is being stored in a bronze table, and includes the Kafka_generated timesamp, key, and value. Three months after the pipeline is deployed the data engineering team has noticed some latency issued during certain times of the day.

A senior data engineer updates the Delta Table's schema and ingestion logic to include the current timestamp (as recoded by Apache Spark) as well the Kafka topic and partition. The team plans to use the additional metadata fields to diagnose the transient processing delays:

Which limitation will the team face while diagnosing this problem?

Options:

A.

New fields not be computed for historic records.

B.

Updating the table schema will invalidate the Delta transaction log metadata.

C.

Updating the table schema requires a default value provided for each file added.

D.

Spark cannot capture the topic partition fields from the kafka source.

Buy Now
Questions 28

What is true for Delta Lake?

Options:

A.

Views in the Lakehouse maintain a valid cache of the most recent versions of source tables at all times.

B.

Delta Lake automatically collects statistics on the first 32 columns of each table, which are leveraged in data skipping based on query filters.

C.

Z-ORDER can only be applied to numeric values stored in Delta Lake tables.

D.

Primary and foreign key constraints can be leveraged to ensure duplicate values are never entered into a dimension table.

Buy Now
Questions 29

A nightly job ingests data into a Delta Lake table using the following code:

The next step in the pipeline requires a function that returns an object that can be used to manipulate new records that have not yet been processed to the next table in the pipeline.

Which code snippet completes this function definition?

def new_records():

Options:

A.

return spark.readStream.table("bronze")

B.

return spark.readStream.load("bronze")

C.

D.

return spark.read.option("readChangeFeed", "true").table ("bronze")

E.

Buy Now
Questions 30

The business reporting team requires that data for their dashboards be updated every hour. The total processing time for the pipeline that extracts, transforms, and loads the data for their pipeline runs in 10 minutes. Assuming normal operating conditions, which configuration will meet their service-level agreement requirements with the lowest cost?

Options:

A.

Schedule a job to execute the pipeline once an hour on a dedicated interactive cluster.

B.

Schedule a job to execute the pipeline once an hour on a new job cluster.

C.

Schedule a Structured Streaming job with a trigger interval of 60 minutes.

D.

Configure a job that executes every time new data lands in a given directory.

Buy Now
Questions 31

The data governance team is reviewing user for deleting records for compliance with GDPR. The following logic has been implemented to propagate deleted requests from the user_lookup table to the user aggregate table.

Assuming that user_id is a unique identifying key and that all users have requested deletion have been removed from the user_lookup table, which statement describes whether successfully executing the above logic guarantees that the records to be deleted from the user_aggregates table are no longer accessible and why?

Options:

A.

No: files containing deleted records may still be accessible with time travel until a BACUM command is used to remove invalidated data files.

B.

Yes: Delta Lake ACID guarantees provide assurance that the DELETE command successed fully and permanently purged these records.

C.

No: the change data feed only tracks inserts and updates not deleted records.

D.

No: the Delta Lake DELETE command only provides ACID guarantees when combined with the MERGE INTO command

Buy Now
Questions 32

A table named user_ltv is being used to create a view that will be used by data analysts on various teams. Users in the workspace are configured into groups, which are used for setting up data access using ACLs.

The user_ltv table has the following schema:

email STRING, age INT, ltv INT

The following view definition is executed:

An analyst who is not a member of the marketing group executes the following query:

SELECT * FROM email_ltv

Which statement describes the results returned by this query?

Options:

A.

Three columns will be returned, but one column will be named "redacted" and contain only null values.

B.

Only the email and itv columns will be returned; the email column will contain all null values.

C.

The email and ltv columns will be returned with the values in user itv.

D.

The email, age. and ltv columns will be returned with the values in user ltv.

E.

Only the email and ltv columns will be returned; the email column will contain the string "REDACTED" in each row.

Buy Now
Questions 33

A Databricks SQL dashboard has been configured to monitor the total number of records present in a collection of Delta Lake tables using the following query pattern:

SELECT COUNT (*) FROM table -

Which of the following describes how results are generated each time the dashboard is updated?

Options:

A.

The total count of rows is calculated by scanning all data files

B.

The total count of rows will be returned from cached results unless REFRESH is run

C.

The total count of records is calculated from the Delta transaction logs

D.

The total count of records is calculated from the parquet file metadata

E.

The total count of records is calculated from the Hive metastore

Buy Now
Questions 34

A production workload incrementally applies updates from an external Change Data Capture feed to a Delta Lake table as an always-on Structured Stream job. When data was initially migrated for this table, OPTIMIZE was executed and most data files were resized to 1 GB. Auto Optimize and Auto Compaction were both turned on for the streaming production job. Recent review of data files shows that most data files are under 64 MB, although each partition in the table contains at least 1 GB of data and the total table size is over 10 TB.

Which of the following likely explains these smaller file sizes?

Options:

A.

Databricks has autotuned to a smaller target file size to reduce duration of MERGE operations

B.

Z-order indices calculated on the table are preventing file compaction

C Bloom filler indices calculated on the table are preventing file compaction

C.

Databricks has autotuned to a smaller target file size based on the overall size of data in the table

D.

Databricks has autotuned to a smaller target file size based on the amount of data in each partition

Buy Now
Questions 35

An hourly batch job is configured to ingest data files from a cloud object storage container where each batch represent all records produced by the source system in a given hour. The batch job to process these records into the Lakehouse is sufficiently delayed to ensure no late-arriving data is missed. The user_id field represents a unique key for the data, which has the following schema:

user_id BIGINT, username STRING, user_utc STRING, user_region STRING, last_login BIGINT, auto_pay BOOLEAN, last_updated BIGINT

New records are all ingested into a table named account_history which maintains a full record of all data in the same schema as the source. The next table in the system is named account_current and is implemented as a Type 1 table representing the most recent value for each unique user_id.

Assuming there are millions of user accounts and tens of thousands of records processed hourly, which implementation can be used to efficiently update the described account_current table as part of each hourly batch job?

Options:

A.

Use Auto Loader to subscribe to new files in the account history directory; configure a Structured Streaminq trigger once job to batch update newly detected files into the account current table.

B.

Overwrite the account current table with each batch using the results of a query against the account history table grouping by user id and filtering for the max value of last updated.

C.

Filter records in account history using the last updated field and the most recent hour processed, as well as the max last iogin by user id write a merge statement to update or insert the most recent value for each user id.

D.

Use Delta Lake version history to get the difference between the latest version of account history and one version prior, then write these records to account current.

E.

Filter records in account history using the last updated field and the most recent hour processed, making sure to deduplicate on username; write a merge statement to update or insert the

most recent value for each username.

Buy Now
Questions 36

The data architect has mandated that all tables in the Lakehouse should be configured as external (also known as "unmanaged") Delta Lake tables.

Which approach will ensure that this requirement is met?

Options:

A.

When a database is being created, make sure that the LOCATION keyword is used.

B.

When configuring an external data warehouse for all table storage, leverage Databricks for all ELT.

C.

When data is saved to a table, make sure that a full file path is specified alongside the Delta format.

D.

When tables are created, make sure that the EXTERNAL keyword is used in the CREATE TABLE statement.

E.

When the workspace is being configured, make sure that external cloud object storage has been mounted.

Buy Now
Questions 37

A junior data engineer has been asked to develop a streaming data pipeline with a grouped aggregation using DataFrame df. The pipeline needs to calculate the average humidity and average temperature for each non-overlapping five-minute interval. Incremental state information should be maintained for 10 minutes for late-arriving data.

Streaming DataFrame df has the following schema:

"device_id INT, event_time TIMESTAMP, temp FLOAT, humidity FLOAT"

Code block:

Choose the response that correctly fills in the blank within the code block to complete this task.

Options:

A.

withWatermark("event_time", "10 minutes")

B.

awaitArrival("event_time", "10 minutes")

C.

await("event_time + ‘10 minutes'")

D.

slidingWindow("event_time", "10 minutes")

E.

delayWrite("event_time", "10 minutes")

Buy Now
Questions 38

A transactions table has been liquid clustered on the columns product_id, user_id, and event_date.

Which operation lacks support for cluster on write?

Options:

A.

spark.writestream.format('delta').mode('append')

B.

CTAS and RTAS statements

C.

INSERT INTO operations

D.

spark.write.format('delta').mode('append')

Buy Now
Questions 39

The view updates represents an incremental batch of all newly ingested data to be inserted or updated in the customers table.

The following logic is used to process these records.

MERGE INTO customers

USING (

SELECT updates.customer_id as merge_ey, updates .*

FROM updates

UNION ALL

SELECT NULL as merge_key, updates .*

FROM updates JOIN customers

ON updates.customer_id = customers.customer_id

WHERE customers.current = true AND updates.address <> customers.address

) staged_updates

ON customers.customer_id = mergekey

WHEN MATCHED AND customers. current = true AND customers.address <> staged_updates.address THEN

UPDATE SET current = false, end_date = staged_updates.effective_date

WHEN NOT MATCHED THEN

INSERT (customer_id, address, current, effective_date, end_date)

VALUES (staged_updates.customer_id, staged_updates.address, true, staged_updates.effective_date, null)

Which statement describes this implementation?

    The customers table is implemented as a Type 2 table; old values are overwritten and new customers are appended.

Options:

A.

The customers table is implemented as a Type 1 table; old values are overwritten by new values and no history is maintained.

B.

The customers table is implemented as a Type 2 table; old values are maintained but marked as no longer current and new values are inserted.

C.

The customers table is implemented as a Type 0 table; all writes are append only with no changes to existing values.

Buy Now
Questions 40

The DevOps team has configured a production workload as a collection of notebooks scheduled to run daily using the Jobs UI. A new data engineering hire is onboarding to the team and has requested access to one of these notebooks to review the production logic.

What are the maximum notebook permissions that can be granted to the user without allowing accidental changes to production code or data?

Options:

A.

Can Manage

B.

Can Edit

C.

No permissions

D.

Can Read

E.

Can Run

Buy Now
Exam Name: Databricks Certified Data Engineer Professional Exam
Last Update: Oct 20, 2025
Questions: 195
Databricks-Certified-Professional-Data-Engineer pdf

Databricks-Certified-Professional-Data-Engineer PDF

$25.5  $84.99
Databricks-Certified-Professional-Data-Engineer Engine

Databricks-Certified-Professional-Data-Engineer Testing Engine

$30  $99.99
Databricks-Certified-Professional-Data-Engineer PDF + Engine

Databricks-Certified-Professional-Data-Engineer PDF + Testing Engine

$40.5  $134.99