A financial services company needs to build a document analysis system that uses Amazon Bedrock to process quarterly reports. The system must analyze financial data, perform sentiment analysis, and validate compliance across batches of reports. Each batch contains 5 reports. Each report requires multiple foundation model (FM) calls. The solution must finish the analysis within 10 seconds for each batch. Current sequential processing takes 45 seconds for each batch.
Which solution will meet these requirements?
A university recently digitized a collection of archival documents, academic journals, and manuscripts. The university stores the digital files in an AWS Lake Formation data lake.
The university hires a GenAI developer to build a solution to allow users to search the digital files by using text queries. The solution must return journal abstracts that are semantically similar to a user's query. Users must be able to search the digitized collection based on text and metadata that is associated with the journal abstracts. The metadata of the digitized files does not contain keywords. The solution must match similar abstracts to one another based on the similarity of their text. The data lake contains fewer than 1 million files.
Which solution will meet these requirements with the LEAST operational overhead?
A company is developing a generative AI (GenAI) application that analyzes customer service calls in real time and generates suggested responses for human customer service agents. The application must process 500,000 concurrent calls during peak hours with less than 200 ms end-to-end latency for each suggestion. The company uses existing architecture to transcribe customer call audio streams. The application must not exceed a predefined monthly compute budget and must maintain auto scaling capabilities.
Which solution will meet these requirements?
A medical company is creating a generative AI (GenAI) system by using Amazon Bedrock. The system processes data from various sources and must maintain end-to-end data lineage. The system must also use real-time personally identifiable information (PII) filtering and audit trails to automatically report compliance.
Which solution will meet these requirements?
A GenAI developer is evaluating Amazon Bedrock foundation models (FMs) to enhance a Europe-based company's internal business application. The company has a multi-account landing zone in AWS Control Tower. The company uses Service Control Policies (SCPs) to allow its accounts to use only the eu-north-1 and eu-west-1 Regions. All customer data must remain in private networks within the approved AWS Regions.
The GenAI developer selects an FM based on analysis and testing and hosts the model in the eu-central-1 Region and the eu-west-3 Region. The GenAI developer must enable access to the FM for the company's employees. The GenAI developer must ensure that requests to the FM are private and remain within the same Regions as the FM.
Which solution will meet these requirements?
A company is building a multicloud generative AI (GenAI)-powered secret resolution application that uses Amazon Bedrock and Agent Squad. The application resolves secrets from multiple sources, including key stores and hardware security modules (HSMs). The application uses AWS Lambda functions to retrieve secrets from the sources. The application uses AWS AppConfig to implement dynamic feature gating. The application supports secret chaining and detects secret drift. The application handles short-lived and expiring secrets. The application also supports prompt flows for templated instructions. The application uses AWS Step Functions to orchestrate agents to resolve the secrets and to manage secret validation and drift detection.
The company finds multiple issues during application testing. The application does not refresh expired secrets in time for agents to use. The application sends alerts for secret drift, but agents still use stale data. Prompt flows within the application reuse outdated templates, which cause cascading failures. The company must resolve the performance issues.
Which solution will meet this requirement?
A medical device company wants to feed reports of medical procedures that used the company’s devices into an AI assistant. To protect patient privacy, the AI assistant must expose patient personally identifiable information (PII) only to surgeons. The AI assistant must redact PII for engineers. The AI assistant must reference only medical reports that are less than 3 years old.
The company stores reports in an Amazon S3 bucket as soon as each report is published. The company has already set up an Amazon Bedrock Knowledge Bases. The AI assistant uses Amazon Cognito to authenticate users.
Which solution will meet these requirements?
An elevator service company has developed an AI assistant application by using Amazon Bedrock. The application generates elevator maintenance recommendations to support the company’s elevator technicians. The company uses Amazon Kinesis Data Streams to collect the elevator sensor data.
New regulatory rules require that a human technician must review all AI-generated recommendations. The company needs to establish human oversight workflows to review and approve AI recommendations. The company must store all human technician review decisions for audit purposes.
Which solution will meet these requirements?
A company has deployed an AI assistant as a React application that uses AWS Amplify, an AWS AppSync GraphQL API, and Amazon Bedrock Knowledge Bases. The application uses the GraphQL API to call the Amazon Bedrock RetrieveAndGenerate API for knowledge base interactions. The company configures an AWS Lambda resolver to use the RequestResponse invocation type.
Application users report frequent timeouts and slow response times. Users report these problems more frequently for complex questions that require longer processing.
The company needs a solution to fix these performance issues and enhance the user experience.
Which solution will meet these requirements?
An ecommerce company is developing a generative AI application that uses Amazon Bedrock with Anthropic Claude to recommend products to customers. Customers report that some recommended products are not available for sale on the website or are not relevant to the customer. Customers also report that the solution takes a long time to generate some recommendations.
The company investigates the issues and finds that most interactions between customers and the product recommendation solution are unique. The company confirms that the solution recommends products that are not in the company’s product catalog. The company must resolve these issues.
Which solution will meet this requirement?
A financial services company uses an AI application to process financial documents by using Amazon Bedrock. During business hours, the application handles approximately 10,000 requests each hour, which requires consistent throughput.
The company uses the CreateProvisionedModelThroughput API to purchase provisioned throughput. Amazon CloudWatch metrics show that the provisioned capacity is unused while on-demand requests are being throttled. The company finds the following code in the application:
response = bedrock_runtime.invoke_model(
modelId="anthropic.claude-v2",
body=json.dumps(payload)
)
The company needs the application to use the provisioned throughput and to resolve the throttling issues.
Which solution will meet these requirements?
A company is building a generative AI (GenAI) application that uses Amazon Bedrock APIs to process complex customer inquiries. During peak usage periods, the application experiences intermittent API timeouts that cause issues such as broken response chunks and delayed data delivery. The application struggles to ensure that prompts remain within token limits when handling complex customer inquiries of varying lengths. Users have reported truncated inputs and incomplete responses. The company has also observed foundation model (FM) invocation failures.
The company needs a retry strategy that automatically handles transient service errors and prevents overwhelming Amazon Bedrock during peak usage periods. The strategy must also adapt to changing service availability and support response streaming and token-aware request handling.
Which solution will meet these requirements?
An enterprise application uses an Amazon Bedrock foundation model (FM) to process and analyze 50 to 200 pages of technical documents. Users are experiencing inconsistent responses and receiving truncated outputs when processing documents that exceed the FM's context window limits.
Which solution will resolve this problem?
A financial services company uses an AI application to process financial documents by using Amazon Bedrock. During business hours, the application handles approximately 10,000 requests each hour, which requires consistent throughput.
The company uses the CreateProvisionedModelThroughput API to purchase provisioned throughput. Amazon CloudWatch metrics show that the provisioned capacity is unused while on-demand requests are being throttled. The company finds the following code in the application:
python
response = bedrock_runtime.invoke_model(modelId="anthropic.claude-v2", body=json.dumps(payload))
The company needs the application to use the provisioned throughput and to resolve the throttling issues.
Which solution will meet these requirements?
A company uses AWS Lake Formation to set up a data lake that contains databases and tables for multiple business units across multiple AWS Regions. The company wants to use a foundation model (FM) through Amazon Bedrock to perform fraud detection. The FM must ingest sensitive financial data from the data lake. The data includes some customer personally identifiable information (PII).
The company must design an access control solution that prevents PII from appearing in a production environment. The FM must access only authorized data subsets that have PII redacted from specific data columns. The company must capture audit trails for all data access.
Which solution will meet these requirements?
A financial technology company is using Amazon Bedrock to build an assessment system for the company’s customer service AI assistant. The AI assistant must provide financial recommendations that are factually accurate, compliant with financial regulations, and conversationally appropriate. The company needs to combine automated quality evaluations at scale with targeted human reviews of critical interactions.
What solution will meet these requirements?
A company upgraded its Amazon Bedrock–powered foundation model (FM) that supports a multilingual customer service assistant. After the upgrade, the assistant exhibited inconsistent behavior across languages. The assistant began generating different responses in some languages when presented with identical questions.
The company needs a solution to detect and address similar problems for future updates. The evaluation must be completed within 45 minutes for all supported languages. The evaluation must process at least 15,000 test conversations in parallel. The evaluation process must be fully automated and integrated into the CI/CD pipeline. The solution must block deployment if quality thresholds are not met.
Which solution will meet these requirements?
A book publishing company wants to build a book recommendation system that uses an AI assistant. The AI assistant will use ML to generate a list of recommended books from the company's book catalog. The system must suggest books based on conversations with customers.
The company stores the text of the books, customers' and editors' reviews of the books, and extracted book metadata in Amazon S3. The system must support low-latency responses and scale efficiently to handle more than 10,000 concurrent users.
Which solution will meet these requirements?
A company has a customer service application that uses Amazon Bedrock to generate personalized responses to customer inquiries. The company needs to establish a quality assurance process to evaluate prompt effectiveness and model configurations across updates. The process must automatically compare outputs from multiple prompt templates, detect response quality issues, provide quantitative metrics, and allow human reviewers to give feedback on responses. The process must prevent configurations that do not meet a predefined quality threshold from being deployed.
Which solution will meet these requirements?
A medical company is building a generative AI (GenAI) application that uses Retrieval Augmented Generation (RAG) to provide evidence-based medical information. The application uses Amazon OpenSearch Service to retrieve vector embeddings. Users report that searches frequently miss results that contain exact medical terms and acronyms and return too many semantically similar but irrelevant documents. The company needs to improve retrieval quality and maintain low end-user latency, even as the document collection grows to millions of documents.
Which solution will meet these requirements with the LEAST operational overhead?
A media company must use Amazon Bedrock to implement a robust governance process for AI-generated content. The company needs to manage hundreds of prompt templates. Multiple teams use the templates across multiple AWS Regions to generate content. The solution must provide version control with approval workflows that include notifications for pending reviews. The solution must also provide detailed audit trails that document prompt activities and consistent prompt parameterization to enforce quality standards.
Which solution will meet these requirements?
A healthcare company uses Amazon Bedrock to deploy an application that generates summaries of clinical documents. The application experiences inconsistent response quality with occasional factual hallucinations. Monthly costs exceed the company’s projections by 40%. A GenAI developer must implement a near real-time monitoring solution to detect hallucinations, identify abnormal token consumption, and provide early warnings of cost anomalies. The solution must require minimal custom development work and maintenance overhead.
Which solution will meet these requirements?
A pharmaceutical company is developing a Retrieval Augmented Generation (RAG) application that uses an Amazon Bedrock knowledge base. The knowledge base uses Amazon OpenSearch Service as a data source for more than 25 million scientific papers. Users report that the application produces inconsistent answers that cite irrelevant sections of papers when queries span methodology, results, and discussion sections of the papers.
The company needs to improve the knowledge base to preserve semantic context across related paragraphs on the scale of the entire corpus of data.
Which solution will meet these requirements?
A specialty coffee company has a mobile app that generates personalized coffee roast profiles by using Amazon Bedrock with a three-stage prompt chain. The prompt chain converts user inputs into structured metadata, retrieves relevant logs for coffee roasts, and generates a personalized roast recommendation for each customer.
Users in multiple AWS Regions report inconsistent roast recommendations for identical inputs, slow inference during the retrieval step, and unsafe recommendations such as brewing at excessively high temperatures. The company must improve the stability of outputs for repeated inputs. The company must also improve app performance and the safety of the app's outputs. The updated solution must ensure 99.5% output consistency for identical inputs and achieve inference latency of less than 1 second. The solution must also block unsafe or hallucinated recommendations by using validated safety controls.
Which solution will meet these requirements?
A healthcare company is using Amazon Bedrock to develop a real-time patient care AI assistant to respond to queries for separate departments that handle clinical inquiries, insurance verification, appointment scheduling, and insurance claims. The company wants to use a multi-agent architecture.
The company must ensure that the AI assistant is scalable and can onboard new features for patients. The AI assistant must be able to handle thousands of parallel patient interactions. The company must ensure that patients receive appropriate domain-specific responses to queries.
Which solution will meet these requirements?
A company needs a system to automatically generate study materials from multiple content sources. The content sources include document files (PDF files, PowerPoint presentations, and Word documents) and multimedia files (recorded videos). The system must process more than 10,000 content sources daily with peak loads of 500 concurrent uploads. The system must also extract key concepts from document files and multimedia files and create contextually accurate summaries. The generated study materials must support real-time collaboration with version control.
Which solution will meet these requirements?
A wildlife conservation agency operates zoos globally. The agency uses various sensors, trackers, and audiovisual recorders to monitor animal behavior. The agency wants to launch a generative AI (GenAI) assistant that can ingest multimodal data to study animal behavior.
The GenAI assistant must support natural language queries, avoid speculative behavioral interpretations, and maintain audit logs for ethical research audits.
Which solution will meet these requirements?
A company developed a multimodal content analysis application by using Amazon Bedrock. The application routes different content types (text, images, and code) to specialized foundation models (FMs).
The application needs to handle multiple types of routing decisions. Simple routing based on file extension must have minimal latency. Complex routing based on content semantics requires analysis before FM selection. The application must provide detailed history and support fallback options when primary FMs fail.
Which solution will meet these requirements?
A retail company has a generative AI (GenAI) product recommendation application that uses Amazon Bedrock. The application suggests products to customers based on browsing history and demographics. The company needs to implement fairness evaluation across multiple demographic groups to detect and measure bias in recommendations between two prompt approaches. The company wants to collect and monitor fairness metrics in real time. The company must receive an alert if the fairness metrics show a discrepancy of more than 15% between demographic groups. The company must receive weekly reports that compare the performance of the two prompt approaches.
Which solution will meet these requirements with the LEAST custom development effort?