Spring Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: clap70

Professional-Data-Engineer Google Professional Data Engineer Exam Questions and Answers

Questions 4

MJTelco’s Google Cloud Dataflow pipeline is now ready to start receiving data from the 50,000 installations. You want to allow Cloud Dataflow to scale its compute power up as required. Which Cloud Dataflow pipeline configuration setting should you update?

Options:

A.

The zone

B.

The number of workers

C.

The disk size per worker

D.

The maximum number of workers

Buy Now
Questions 5

You need to compose visualizations for operations teams with the following requirements:

Which approach meets the requirements?

Options:

A.

Load the data into Google Sheets, use formulas to calculate a metric, and use filters/sorting to show only suboptimal links in a table.

B.

Load the data into Google BigQuery tables, write Google Apps Script that queries the data, calculates the metric, and shows only suboptimal rows in a table in Google Sheets.

C.

Load the data into Google Cloud Datastore tables, write a Google App Engine Application that queries all rows, applies a function to derive the metric, and then renders results in a table using the Google charts and visualization API.

D.

Load the data into Google BigQuery tables, write a Google Data Studio 360 report that connects to your data, calculates a metric, and then uses a filter expression to show only suboptimal rows in a table.

Buy Now
Questions 6

MJTelco is building a custom interface to share data. They have these requirements:

They need to do aggregations over their petabyte-scale datasets.

They need to scan specific time range rows with a very fast response time (milliseconds).

Which combination of Google Cloud Platform products should you recommend?

Options:

A.

Cloud Datastore and Cloud Bigtable

B.

Cloud Bigtable and Cloud SQL

C.

BigQuery and Cloud Bigtable

D.

BigQuery and Cloud Storage

Buy Now
Questions 7

You are working on a sensitive project involving private user data. You have set up a project on Google Cloud Platform to house your work internally. An external consultant is going to assist with coding a complex transformation in a Google Cloud Dataflow pipeline for your project. How should you maintain users’ privacy?

Options:

A.

Grant the consultant the Viewer role on the project.

B.

Grant the consultant the Cloud Dataflow Developer role on the project.

C.

Create a service account and allow the consultant to log on with it.

D.

Create an anonymized sample of the data for the consultant to work with in a different project.

Buy Now
Questions 8

You have a BigQuery table that ingests data directly from a Pub/Sub subscription. The ingested data is encrypted with a Google-managed encryption key. You need to meet a new organization policy that requires you to use keysfrom a centralized Cloud Key Management Service (Cloud KMS) project to encrypt data at rest. What should you do?

Options:

A.

Create a new BigOuory table by using customer-managed encryption keys (CMEK), and migrate the data from the old BigQuery table.

B.

Create a new BigOuery table and Pub/Sub topic by using customer-managed encryption keys (CMEK), and migrate the data from the old Bigauery table.

C.

Create a new Pub/Sub topic with CMEK and use the existing BigQuery table by using Google-managed encryption key.

D.

Use Cloud KMS encryption key with Dataflow to ingest the existing Pub/Sub subscription to the existing BigQuery table.

Buy Now
Questions 9

You work for a shipping company that uses handheld scanners to read shipping labels. Your company has strict data privacy standards that require scanners to only transmit recipients’ personally identifiable information (PII) to analytics systems, which violates user privacy rules. You want to quickly build a scalable solution using cloud-native managed services to prevent exposure of PII to the analytics systems. What should you do?

Options:

A.

Create an authorized view in BigQuery to restrict access to tables with sensitive data.

B.

Install a third-party data validation tool on Compute Engine virtual machines to check the incoming data for sensitive information.

C.

Use Stackdriver logging to analyze the data passed through the total pipeline to identify transactions that may contain sensitive information.

D.

Build a Cloud Function that reads the topics and makes a call to the Cloud Data Loss Prevention API. Use the tagging and confidence levels to either pass or quarantine the data in a bucket for review.

Buy Now
Questions 10

You are part of a healthcare organization where data is organized and managed by respective data owners in various storage services. As a result of this decentralized ecosystem, discovering and managing data has become difficult You need to quickly identify and implement a cost-optimized solution to assist your organization with the following

• Data management and discovery

• Data lineage tracking

• Data quality validation

How should you build the solution?

Options:

A.

Use BigLake to convert the current solution into a data lake architecture.

B.

Build a new data discovery tool on Google Kubernetes Engine that helps with new source onboarding and data lineage tracking.

C.

Use BigOuery to track data lineage, and use Dataprep to manage data and perform data quality validation.

D.

Use Dataplex to manage data, track data lineage, and perform data quality validation.

Buy Now
Questions 11

You are designing a data mesh on Google Cloud with multiple distinct data engineering teams building data products. The typical data curation design pattern consists of landing files in Cloud Storage, transforming raw data in Cloud Storage and BigQuery datasets. and storing the final curated data product in BigQuery datasets You need to configure Dataplex to ensure that each team can access only the assets needed to build their data products. You also need to ensure that teams can easily share the curated data product. What should you do?

Options:

A.

1 Create a single Dataplex virtual lake and create a single zone to contain landing, raw. and curated data.2 Provide each data engineering team access to the virtual lake.

B.

1 Create a single Dataplex virtual lake and create a single zone to contain landing, raw. and curated data. 2 Build separate assets for each data product within the zone.3. Assign permissions to the data engineering teams at the zone level.

C.

1 Create a Dataplex virtual lake for each data product, and create a single zone to contain landing, raw, and curated data.2. Provide the data engineering teams with full access to the virtual lake assigned to their data product.

D.

1 Create a Dataplex virtual lake for each data product, and create multiple zones for landing, raw. and curated data. 2. Provide the data engineering teams with full access to the virtual lake assigned to their data product.

Buy Now
Questions 12

You work on a regression problem in a natural language processing domain, and you have 100M labeled exmaples in your dataset. You have randomly shuffled your data and split your dataset into train and test samples (in a 90/10 ratio). After you trained the neural network and evaluatedyour model on a test set, you discover that the root-mean-squared error (RMSE) of your model is twice as high on the train set as on the test set. How should you improve the performance of your model?

Options:

A.

Increase the share of the test sample in the train-test split.

B.

Try to collect more data and increase the size of your dataset.

C.

Try out regularization techniques (e.g., dropout of batch normalization) to avoid overfitting.

D.

Increase the complexity of your model by, e.g., introducing an additional layer or increase sizing the size of vocabularies or n-grams used.

Buy Now
Questions 13

You are planning to migrate your current on-premises Apache Hadoop deployment to the cloud. You need to ensure that the deployment is as fault-tolerant and cost-effective as possible for long-running batch jobs. You want to use a managed service. What should you do?

Options:

A.

Deploy a Cloud Dataproc cluster. Use a standard persistent disk and 50% preemptible workers. Store data in Cloud Storage, and change references in scripts from hdfs:// to gs://

B.

Deploy a Cloud Dataproc cluster. Use an SSD persistent disk and 50% preemptible workers. Store data in Cloud Storage, and change references in scripts from hdfs:// to gs://

C.

Install Hadoop and Spark on a 10-node Compute Engine instance group with standard instances. Install the Cloud Storage connector, and store the data in Cloud Storage. Change references in scripts from hdfs:// to gs://

D.

Install Hadoop and Spark on a 10-node Compute Engine instance group with preemptible instances. Store data in HDFS. Change references in scripts from hdfs:// to gs://

Buy Now
Questions 14

You work for a large ecommerce company. You store your customers order data in Bigtable. You have a garbage collection policy set to delete the data after 30 days and the number of versions is set to 1. When the data analysts run a query to report total customer spending, the analysts sometimes see customer data that is older than 30 days. You need to ensure that the analysts do not see customer data older than 30 days while minimizing cost and overhead. What should you do?

Options:

A.

Set the expiring values of the column families to 30 days and set the number of versions to 2.

B.

Use a timestamp range filter in the query to fetch the customer's data for a specific range.

C.

Set the expiring values of the column families to 29 days and keep the number of versions to 1.

D.

Schedule a job daily to scan the data in the table and delete data older than 30 days.

Buy Now
Questions 15

Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?

Options:

A.

Store the common data in BigQuery as partitioned tables.

B.

Store the common data in BigQuery and expose authorized views.

C.

Store the common data encoded as Avro in Google Cloud Storage.

D.

Store he common data in the HDFS storage for a Google Cloud Dataproc cluster.

Buy Now
Questions 16

You have a data pipeline with a Cloud Dataflow job that aggregates and writes time series metrics to Cloud Bigtable. This data feeds a dashboard used by thousands of users across the organization. You need to support additional concurrent users and reduce the amount of time required to write the data. Which two actions should you take? (Choose two.)

Options:

A.

Configure your Cloud Dataflow pipeline to use local execution

B.

Increase the maximum number of Cloud Dataflow workers by setting maxNumWorkers in PipelineOptions

C.

Increase the number of nodes in the Cloud Bigtable cluster

D.

Modify your Cloud Dataflow pipeline to use the Flatten transform before writing to Cloud Bigtable

E.

Modify your Cloud Dataflow pipeline to use the CoGroupByKey transform before writing to Cloud Bigtable

Buy Now
Questions 17

You have designed an Apache Beam processing pipeline that reads from a Pub/Sub topic. The topic has a message retention duration of one day, and writes to a Cloud Storage bucket. You need to select a bucket location and processing strategy to prevent data loss in case of a regional outage with an RPO of 15 minutes. What should you do?

Options:

A.

1 Use a regional Cloud Storage bucket2 Monitor Dataflow metrics with Cloud Monitoring to determine when an outage occurs3 Seek the subscription back in time by one day to recover the acknowledged messages4 Start the Dataflow job in a secondary region and write in a bucket in the same region

B.

1 Use a multi-regional Cloud Storage bucket2 Monitor Dataflow metrics with Cloud Monitoring to determine when an outage occurs3 Seek the subscription back in time by 60 minutes to recover the acknowledged messages4 Start the Dataflow job in a secondary region

C.

1. Use a dual-region Cloud Storage bucket.2. Monitor Dataflow metrics with Cloud Monitoring to determine when an outage occurs3 Seek the subscription back in time by 15 minutes to recover the acknowledged messages4 Start the Dataflow job in a secondary region

D.

1. Use a dual-region Cloud Storage bucket with turbo replication enabled2 Monitor Dataflow metrics with Cloud Monitoring to determine when an outage occurs3 Seek the subscription back in time by 60 minutes to recover the acknowledged messages4 Start the Dataflow job in a secondary region.

Buy Now
Questions 18

Your company has data assets across multiple Cloud Storage buckets and BigQuery datasets containing raw and processed data. The requirement is to establish a unified data governance framework that allows for centralized metadata discovery, data quality monitoring, and consistent security policy application across these various data stores without physically moving or duplicating the data. You need to implement a solution to achieve this federated governance. What should you do?

Options:

A.

Deploy a centralized Cloud SQL database to store metadata extracted from BigQuery and Cloud Storage using custom scripts.

Integrate the database with Looker Studio for data discovery and visualization.

Implement a custom policy engine using Cloud Run functions triggered by changes in IAM policies to enforce consistent security across projects.

B.

Create a Looker Studio dashboard on BigQuery INFORMATION_SCHEMA views to visualize and monitor data quality.

Manage security using IAM policies at the project level, supplemented by BigQuery authorized views for granular access control.

C.

Export metadata out of Dataplex Universal Catalog by running a metadata export job.

Implement Dataproc Metastore to manage table schemas and Apache Hive metastore for metadata discovery.

Manage security using a combination of BigQuery row-level security and Cloud Storage policies.

D.

Use Dataplex to organize the BigQuery datasets and Cloud Storage buckets into lakes and zones.

Use Dataplex for automated metadata discovery, centralized security policy management, data profiling, and data quality tasks.

Buy Now
Questions 19

You work for a large ecommerce company. You are using Pub/Sub to ingest the clickstream data to Google Cloud for analytics. You observe that when a new subscriber connects to an existing topic to analyze data, they are unable to subscribe to older data for an upcoming yearly sale event in two months, you need a solution that, once implemented, will enable any new subscriber to read the last 30 days of data. What should you do?

Options:

A.

Create a new topic, and publish the last 30 days of data each time a new subscriber connects to an existing topic.

B.

Set the topic retention policy to 30 days.

C.

Set the subscriber retention policy to 30 days.

D.

Ask the source system to re-push the data to Pub/Sub, and subscribe to it.

Buy Now
Questions 20

You operate a logistics company, and you want to improve event delivery reliability for vehicle-based sensors. You operate small data centers around the world to capture these events, but leased lines that provide connectivity from your event collection infrastructure to your event processing infrastructure are unreliable, with unpredictable latency. You want to address this issue in the most cost-effective way. What should you do?

Options:

A.

Deploy small Kafka clusters in your data centers to buffer events.

B.

Have the data acquisition devices publish data to Cloud Pub/Sub.

C.

Establish a Cloud Interconnect between all remote data centers and Google.

D.

Write a Cloud Dataflow pipeline that aggregates all data in session windows.

Buy Now
Questions 21

You want to analyze hundreds of thousands of social media posts daily at the lowest cost and with the fewest steps.

You have the following requirements:

You will batch-load the posts once per day and run them through the Cloud Natural Language API.

You will extract topics and sentiment from the posts.

You must store the raw posts for archiving and reprocessing.

You will create dashboards to be shared with people both inside and outside your organization.

You need to store both the data extracted from the API to perform analysis as well as the raw social media posts for historical archiving. What should you do?

Options:

A.

Store the social media posts and the data extracted from the API in BigQuery.

B.

Store the social media posts and the data extracted from the API in Cloud SQL.

C.

Store the raw social media posts in Cloud Storage, and write the data extracted from the API into BigQuery.

D.

Feed to social media posts into the API directly from the source, and write the extracted data from the API into BigQuery.

Buy Now
Questions 22

You have a BigQuery dataset named "customers". All tables will be tagged by using a Data Catalog tag template named "gdpr". The template contains one mandatory field, "has sensitive data~. with a boolean value. All employees must be able to do a simple search and find tables in the dataset that have either true or false in the "has sensitive data" field. However, only the Human Resources (HR) group should be able to see the data inside the tables for which "hass-ensitive-data" is true. You give the all employees group the bigquery.metadataViewer and bigquery.connectionUser roles on the dataset. You want to minimize configuration overhead. What should you do next?

Options:

A.

Create the "gdpr" tag template with private visibility. Assign the bigquery -dataViewer role to the HR group on the tables that contain sensitive data.

B.

Create the ~gdpr" tag template with private visibility. Assign the datacatalog. tagTemplateViewer role on this tag to the all employeesgroup, and assign the bigquery.dataViewer role to the HR group on the tables that contain sensitive data.

C.

Create the "gdpr" tag template with public visibility. Assign the bigquery. dataViewer role to the HR group on the tables that containsensitive data.

D.

Create the "gdpr" tag template with public visibility. Assign the datacatalog. tagTemplateViewer role on this tag to the all employees.group, and assign the bijquery.dataViewer role to the HR group on the tables that contain sensitive data.

Buy Now
Questions 23

You are running a pipeline in Cloud Dataflow that receives messages from a Cloud Pub/Sub topic and writes the results to a BigQuery dataset in the EU. Currently, your pipeline is located in europe-west4 and has a maximum of 3 workers, instance type n1-standard-1. You notice that during peak periods, your pipeline is struggling to process records in a timely fashion, when all 3 workers are at maximum CPU utilization. Which two actions can you take to increase performance of your pipeline? (Choose two.)

Options:

A.

Increase the number of max workers

B.

Use a larger instance type for your Cloud Dataflow workers

C.

Change the zone of your Cloud Dataflow pipeline to run in us-central1

D.

Create a temporary table in Cloud Bigtable that will act as a buffer for new data. Create a new step in your pipeline to write to this table first, and then create a new pipeline to write from Cloud Bigtable to BigQuery

E.

Create a temporary table in Cloud Spanner that will act as a buffer for new data. Create a new step in your pipeline to write to this table first, and then create a new pipeline to write from Cloud Spanner to BigQuery

Buy Now
Questions 24

You are building new real-time data warehouse for your company and will use Google BigQuery streaming inserts. There is no guarantee that data will only be sent in once but you do have a unique ID for each row of data and an event timestamp. You want to ensure that duplicates are not included while interactively querying data. Which query type should you use?

Options:

A.

Include ORDER BY DESK on timestamp column and LIMIT to 1.

B.

Use GROUP BY on the unique ID column and timestamp column and SUM on the values.

C.

Use the LAG window function with PARTITION by unique ID along with WHERE LAG IS NOT NULL.

D.

Use the ROW_NUMBER window function with PARTITION by unique ID along with WHERE row equals 1.

Buy Now
Questions 25

You are migrating a large number of files from a public HTTPS endpoint to Cloud Storage. The files are protected from unauthorized access using signed URLs. You created a TSV file that contains the list of object URLs and started a transfer job by using Storage Transfer Service. You notice that the job has run for a long time and eventually failed Checking the logs of the transfer job reveals that the job was running fine until one point, and then it failed due to HTTP 403 errors on the remaining files You verified that there were no changes to the source system You need to fix the problem to resume the migration process. What should you do?

Options:

A.

Set up Cloud Storage FUSE, and mount the Cloud Storage bucket on a Compute Engine Instance Remove the completed files from the TSV file Use a shell script to iterate through the TSV file and download the remaining URLs to the FUSE mount point.

B.

Update the file checksums in the TSV file from using MD5 to SHA256. Remove the completed files from the TSV file and rerun the Storage Transfer Service job.

C.

Renew the TLS certificate of the HTTPS endpoint Remove the completed files from the TSV file and rerun the Storage Transfer Service job.

D.

Create a new TSV file for the remaining files by generating signed URLs with a longer validity period. Split the TSV file into multiple smaller files and submit them as separate Storage Transfer Service jobs in parallel.

Buy Now
Questions 26

Flowlogistic’s management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system. You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?

Options:

A.

Cloud Pub/Sub, Cloud Dataflow, and Cloud Storage

B.

Cloud Pub/Sub, Cloud Dataflow, and Local SSD

C.

Cloud Pub/Sub, Cloud SQL, and Cloud Storage

D.

Cloud Load Balancing, Cloud Dataflow, and Cloud Storage

Buy Now
Questions 27

Flowlogistic’s CEO wants to gain rapid insight into their customer base so his sales team can be better informed in the field. This team is not very technical, so they’ve purchased a visualization tool to simplify the creation of BigQuery reports. However, they’ve been overwhelmed by all thedata in the table, and are spending a lot of money on queries trying to find the data they need. You want to solve their problem in the most cost-effective way. What should you do?

Options:

A.

Export the data into a Google Sheet for virtualization.

B.

Create an additional table with only the necessary columns.

C.

Create a view on the table to present to the virtualization tool.

D.

Create identity and access management (IAM) roles on the appropriate columns, so only they appear in a query.

Buy Now
Questions 28

Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.

Which approach should you take?

Options:

A.

Attach the timestamp on each message in the Cloud Pub/Sub subscriber application as they are received.

B.

Attach the timestamp and Package ID on the outbound message from each publisher device as they are sent to Clod Pub/Sub.

C.

Use the NOW () function in BigQuery to record the event’s time.

D.

Use the automatically generated timestamp from Cloud Pub/Sub to order the data.

Buy Now
Questions 29

Your startup has never implemented a formal security policy. Currently, everyone in the company has access to the datasets stored in Google BigQuery. Teams have freedom to use the service as they see fit, and they have not documented their use cases. You have been asked to secure the data warehouse. You need to discover what everyone is doing. What should you do first?

Options:

A.

Use Google Stackdriver Audit Logs to review data access.

B.

Get the identity and access management IIAM) policy of each table

C.

Use Stackdriver Monitoring to see the usage of BigQuery query slots.

D.

Use the Google Cloud Billing API to see what account the warehouse is being billed to.

Buy Now
Questions 30

You are building a model to make clothing recommendations. You know a user’s fashion preference is likely to change over time, so you build a data pipeline to stream new data back to the model as it becomes available. How should you use this data to train the model?

Options:

A.

Continuously retrain the model on just the new data.

B.

Continuously retrain the model on a combination of existing data and the new data.

C.

Train on the existing data while using the new data as your test set.

D.

Train on the new data while using the existing data as your test set.

Buy Now
Questions 31

You need to store and analyze social media postings in Google BigQuery at a rate of 10,000 messages per minute in near real-time. Initially, design the application to use streaming inserts for individual postings. Your application also performs data aggregations right after the streaming inserts. You discover that the queries after streaming inserts do not exhibit strong consistency, and reports from the queries might miss in-flight data. How can you adjust your application design?

Options:

A.

Re-write the application to load accumulated data every 2 minutes.

B.

Convert the streaming insert code to batch load for individual messages.

C.

Load the original message to Google Cloud SQL, and export the table every hour to BigQuery via streaming inserts.

D.

Estimate the average latency for data availability after streaming inserts, and always run queries after waiting twice as long.

Buy Now
Questions 32

An external customer provides you with a daily dump of data from their database. The data flows into Google Cloud Storage GCS as comma-separated values (CSV) files. You want to analyze this data in Google BigQuery, but the data could have rows that are formatted incorrectly or corrupted. How should you build this pipeline?

Options:

A.

Use federated data sources, and check data in the SQL query.

B.

Enable BigQuery monitoring in Google Stackdriver and create an alert.

C.

Import the data into BigQuery using the gcloud CLI and set max_bad_records to 0.

D.

Run a Google Cloud Dataflow batch pipeline to import the data into BigQuery, and push errors to another dead-letter table for analysis.

Buy Now
Questions 33

Your company is running their first dynamic campaign, serving different offers by analyzing real-time data during the holiday season. The data scientists are collecting terabytes of data that rapidly grows every hour during their 30-day campaign. They are using Google Cloud Dataflow to preprocess the data and collect the feature (signals) data that is needed for the machine learning model in Google Cloud Bigtable. The team is observing suboptimal performance with reads and writes of their initial load of 10 TB of data. They want to improve this performance while minimizing cost. What should they do?

Options:

A.

Redefine the schema by evenly distributing reads and writes across the row space of the table.

B.

The performance issue should be resolved over time as the site of the BigDate cluster is increased.

C.

Redesign the schema to use a single row key to identify values that need to be updated frequently in the cluster.

D.

Redesign the schema to use row keys based on numeric IDs that increase sequentially per user viewing the offers.

Buy Now
Questions 34

You want to use a database of information about tissue samples to classify future tissue samples as either normal or mutated. You are evaluating an unsupervised anomaly detection method for classifying the tissue samples. Which two characteristic support this method? (Choose two.)

Options:

A.

There are very few occurrences of mutations relative to normal samples.

B.

There are roughly equal occurrences of both normal and mutated samples in the database.

C.

You expect future mutations to have different features from the mutated samples in the database.

D.

You expect future mutations to have similar features to the mutated samples in the database.

E.

You already have labels for which samples are mutated and which are normal in the database.

Buy Now
Questions 35

Business owners at your company have given you a database of bank transactions. Each row contains the user ID, transaction type, transaction location, and transaction amount. They ask you to investigate what type of machine learning can be applied to the data. Which three machine learning applications can you use? (Choose three.)

Options:

A.

Supervised learning to determine which transactions are most likely to be fraudulent.

B.

Unsupervised learning to determine which transactions are most likely to be fraudulent.

C.

Clustering to divide the transactions into N categories based on feature similarity.

D.

Supervised learning to predict the location of a transaction.

E.

Reinforcement learning to predict the location of a transaction.

F.

Unsupervised learning to predict the location of a transaction.

Buy Now
Questions 36

You want to process payment transactions in a point-of-sale application that will run on Google Cloud Platform. Your user base could grow exponentially, but you do not want to manage infrastructure scaling.

Which Google database service should you use?

Options:

A.

Cloud SQL

B.

BigQuery

C.

Cloud Bigtable

D.

Cloud Datastore

Buy Now
Questions 37

Your company built a TensorFlow neural-network model with a large number of neurons and layers. The model fits well for the training data. However, when tested against new data, it performs poorly. What method can you employ to address this?

Options:

A.

Threading

B.

Serialization

C.

Dropout Methods

D.

Dimensionality Reduction

Buy Now
Questions 38

You are deploying 10,000 new Internet of Things devices to collect temperature data in your warehouses globally. You need to process, store and analyze these very large datasets in real time. What should you do?

Options:

A.

Send the data to Google Cloud Datastore and then export to BigQuery.

B.

Send the data to Google Cloud Pub/Sub, stream Cloud Pub/Sub to Google Cloud Dataflow, and store the data in Google BigQuery.

C.

Send the data to Cloud Storage and then spin up an Apache Hadoop cluster as needed in Google Cloud Dataproc whenever analysis is required.

D.

Export logs in batch to Google Cloud Storage and then spin up a Google Cloud SQL instance, import the data from Cloud Storage, and run an analysis as needed.

Buy Now
Questions 39

You are building a model to predict whether or not it will rain on a given day. You have thousands of input features and want to see if you can improve training speed by removing some features while having a minimum effect on model accuracy. What can you do?

Options:

A.

Eliminate features that are highly correlated to the output labels.

B.

Combine highly co-dependent features into one representative feature.

C.

Instead of feeding in each feature individually, average their values in batches of 3.

D.

Remove the features that have null values for more than 50% of the training records.

Buy Now
Questions 40

Your company is performing data preprocessing for a learning algorithm in Google Cloud Dataflow. Numerous data logs are being are being generated during this step, and the team wants to analyze them. Due to the dynamic nature of the campaign, the data is growing exponentially every hour.

The data scientists have written the following code to read the data for a new key features in the logs.

BigQueryIO.Read

.named(“ReadLogData”)

.from(“clouddataflow-readonly:samples.log_data”)

You want to improve the performance of this data read. What should you do?

Options:

A.

Specify the TableReference object in the code.

B.

Use .fromQuery operation to read specific fields from the table.

C.

Use of both the Google BigQuery TableSchema and TableFieldSchema classes.

D.

Call a transform that returns TableRow objects, where each element in the PCollexction represents a single row in the table.

Buy Now
Questions 41

Your company’s customer and order databases are often under heavy load. This makes performing analytics against them difficult without harming operations. The databases are in a MySQL cluster, with nightly backups taken using mysqldump. You want to perform analytics with minimal impact on operations. What should you do?

Options:

A.

Add a node to the MySQL cluster and build an OLAP cube there.

B.

Use an ETL tool to load the data from MySQL into Google BigQuery.

C.

Connect an on-premises Apache Hadoop cluster to MySQL and perform ETL.

D.

Mount the backups to Google Cloud SQL, and then process the data using Google Cloud Dataproc.

Buy Now
Questions 42

Your company is in a highly regulated industry. One of your requirements is to ensure individual users have access only to the minimum amount of information required to do their jobs. You want to enforce this requirement with Google BigQuery. Which three approaches can you take? (Choose three.)

Options:

A.

Disable writes to certain tables.

B.

Restrict access to tables by role.

C.

Ensure that the data is encrypted at all times.

D.

Restrict BigQuery API access to approved users.

E.

Segregate data across multiple tables or databases.

F.

Use Google Stackdriver Audit Logging to determine policy violations.

Buy Now
Questions 43

Your company is migrating their 30-node Apache Hadoop cluster to the cloud. They want to re-use Hadoop jobs they have already created and minimize the management of the cluster as much as possible. They also want to be able to persist data beyond the life of the cluster. What should you do?

Options:

A.

Create a Google Cloud Dataflow job to process the data.

B.

Create a Google Cloud Dataproc cluster that uses persistent disks for HDFS.

C.

Create a Hadoop cluster on Google Compute Engine that uses persistent disks.

D.

Create a Cloud Dataproc cluster that uses the Google Cloud Storage connector.

E.

Create a Hadoop cluster on Google Compute Engine that uses Local SSD disks.

Buy Now
Questions 44

Your company handles data processing for a number of different clients. Each client prefers to use their own suite of analytics tools, with some allowing direct query access via Google BigQuery. You need to secure the data so that clients cannot see each other’s data. You want to ensure appropriate access to the data. Which three steps should you take? (Choose three.)

Options:

A.

Load data into different partitions.

B.

Load data into a different dataset for each client.

C.

Put each client’s BigQuery dataset into a different table.

D.

Restrict a client’s dataset to approved users.

E.

Only allow a service account to access the datasets.

F.

Use the appropriate identity and access management (IAM) roles for each client’s users.

Buy Now
Questions 45

You are creating a model to predict housing prices. Due to budget constraints, you must run it on a single resource-constrained virtual machine. Which learning algorithm should you use?

Options:

A.

Linear regression

B.

Logistic classification

C.

Recurrent neural network

D.

Feedforward neural network

Buy Now
Questions 46

Your weather app queries a database every 15 minutes to get the current temperature. The frontend is powered by Google App Engine and server millions of users. How should you design the frontend to respond to a database failure?

Options:

A.

Issue a command to restart the database servers.

B.

Retry the query with exponential backoff, up to a cap of 15 minutes.

C.

Retry the query every second until it comes back online to minimize staleness of data.

D.

Reduce the query frequency to once every hour until the database comes back online.

Buy Now
Questions 47

If you want to create a machine learning model that predicts the price of a particular stock based on its recent price history, what type of estimator should you use?

Options:

A.

Unsupervised learning

B.

Regressor

C.

Classifier

D.

Clustering estimator

Buy Now
Questions 48

Which of the following job types are supported by Cloud Dataproc (select 3 answers)?

Options:

A.

Hive

B.

Pig

C.

YARN

D.

Spark

Buy Now
Questions 49

The Dataflow SDKs have been recently transitioned into which Apache service?

Options:

A.

Apache Spark

B.

Apache Hadoop

C.

Apache Kafka

D.

Apache Beam

Buy Now
Questions 50

Your company produces 20,000 files every hour. Each data file is formatted as a comma separated values (CSV) file that is less than 4 KB. All files must be ingested on Google Cloud Platform before they can be processed. Your company site has a 200 ms latency to Google Cloud, and your Internet connection bandwidth is limited as 50 Mbps. You currently deploy a secure FTP (SFTP) server on a virtual machine in Google Compute Engine as the data ingestion point. A local SFTP client runs on a dedicated machine to transmit the CSV files as is. The goal is to make reports with data from the previous day available to the executives by 10:00 a.m. each day. This design is barely able to keep up with the current volume, even though the bandwidth utilization is rather low.

You are told that due to seasonality, your company expects the number of files to double for the next three months. Which two actions should you take? (choose two.)

Options:

A.

Introduce data compression for each file to increase the rate file of file transfer.

B.

Contact your internet service provider (ISP) to increase your maximum bandwidth to at least 100 Mbps.

C.

Redesign the data ingestion process to use gsutil tool to send the CSV files to a storage bucket in parallel.

D.

Assemble 1,000 files into a tape archive (TAR) file. Transmit the TAR files instead, and disassemble the CSV files in the cloud upon receiving them.

E.

Create an S3-compatible storage endpoint in your network, and use Google Cloud Storage Transfer Service to transfer on-premices data to the designated storage bucket.

Buy Now
Questions 51

When you store data in Cloud Bigtable, what is the recommended minimum amount of stored data?

Options:

A.

500 TB

B.

1 GB

C.

1 TB

D.

500 GB

Buy Now
Questions 52

Which of the following statements about Legacy SQL and Standard SQL is not true?

Options:

A.

Standard SQL is the preferred query language for BigQuery.

B.

If you write a query in Legacy SQL, it might generate an error if you try to run it with Standard SQL.

C.

One difference between the two query languages is how you specify fully-qualified table names (i.e. table names that include their associated project name).

D.

You need to set a query language for each dataset and the default is Standard SQL.

Buy Now
Questions 53

Which SQL keyword can be used to reduce the number of columns processed by BigQuery?

Options:

A.

BETWEEN

B.

WHERE

C.

SELECT

D.

LIMIT

Buy Now
Questions 54

Your company has recently grown rapidly and now ingesting data at a significantly higher rate than it was previously. You manage the daily batch MapReduce analytics jobs in Apache Hadoop. However, the recent increase in data has meant the batch jobs are falling behind. You were asked to recommend ways the development team could increase the responsiveness of the analytics without increasing costs. What should you recommend they do?

Options:

A.

Rewrite the job in Pig.

B.

Rewrite the job in Apache Spark.

C.

Increase the size of the Hadoop cluster.

D.

Decrease the size of the Hadoop cluster but also rewrite the job in Hive.

Buy Now
Questions 55

You are deploying a new storage system for your mobile application, which is a media streaming service. You decide the best fit is Google Cloud Datastore. You have entities with multiple properties, some of which can take on multiple values. For example, in the entity ‘Movie’ the property ‘actors’ and the property ‘tags’ have multiple values but the property ‘date released’ does not. A typical query would ask for all movies with actor= ordered by date_released or all movies with tag=Comedy ordered by date_released. How should you avoid a combinatorial explosion in the number of indexes?

Options:

A.

Option A

B.

Option B.

C.

Option C

D.

Option D

Buy Now
Questions 56

Which of these are examples of a value in a sparse vector? (Select 2 answers.)

Options:

A.

[0, 5, 0, 0, 0, 0]

B.

[0, 0, 0, 1, 0, 0, 1]

C.

[0, 1]

D.

[1, 0, 0, 0, 0, 0, 0]

Buy Now
Questions 57

Which of these statements about BigQuery caching is true?

Options:

A.

By default, a query's results are not cached.

B.

BigQuery caches query results for 48 hours.

C.

Query results are cached even if you specify a destination table.

D.

There is no charge for a query that retrieves its results from cache.

Buy Now
Questions 58

Which of these statements about exporting data from BigQuery is false?

Options:

A.

To export more than 1 GB of data, you need to put a wildcard in the destination filename.

B.

The only supported export destination is Google Cloud Storage.

C.

Data can only be exported in JSON or Avro format.

D.

The only compression option available is GZIP.

Buy Now
Questions 59

Which action can a Cloud Dataproc Viewer perform?

Options:

A.

Submit a job.

B.

Create a cluster.

C.

Delete a cluster.

D.

List the jobs.

Buy Now
Questions 60

Which of the following is NOT a valid use case to select HDD (hard disk drives) as the storage for Google Cloud Bigtable?

Options:

A.

You expect to store at least 10 TB of data.

B.

You will mostly run batch workloads with scans and writes, rather than frequently executing random reads of a small number of rows.

C.

You need to integrate with Google BigQuery.

D.

You will not use the data to back a user-facing or latency-sensitive application.

Buy Now
Questions 61

You work for an economic consulting firm that helps companies identify economic trends as they happen. As part of your analysis, you use Google BigQuery to correlate customer data with the average prices of the 100 most common goods sold, including bread, gasoline, milk, and others. The average prices of these goods are updated every 30 minutes. You want to make sure this data stays up to date so you can combine it with other data in BigQuery as cheaply as possible. What should you do?

Options:

A.

Load the data every 30 minutes into a new partitioned table in BigQuery.

B.

Store and update the data in a regional Google Cloud Storage bucket and create a federated data source in BigQuery

C.

Store the data in Google Cloud Datastore. Use Google Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Cloud Datastore

D.

Store the data in a file in a regional Google Cloud Storage bucket. Use Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Google Cloud Storage.

Buy Now
Questions 62

You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?

Options:

A.

Create a view in BigQuery that concatenates the FirstName and LastName field values to produce the FullName.

B.

Add a new column called FullName to the Users table. Run an UPDATE statement that updates the FullName column for each user with the concatenation of the FirstName and LastName values.

C.

Create a Google Cloud Dataflow job that queries BigQuery for the entire Users table, concatenates the FirstName value and LastName value for each user, and loads the proper values for FirstName, LastName, and FullName into a new table in BigQuery.

D.

Use BigQuery to export the data for the table to a CSV file. Create a Google Cloud Dataproc job to process the CSV file and output a new CSV file containing the proper values for FirstName, LastName and FullName. Run a BigQuery load job to load the new CSV file into BigQuery.

Buy Now
Questions 63

You are choosing a NoSQL database to handle telemetry data submitted from millions of Internet-of-Things (IoT) devices. The volume of data is growing at 100 TB per year, and each data entry has about 100 attributes. The data processing pipeline does not require atomicity, consistency, isolation, and durability (ACID). However, high availability and low latency are required.

You need to analyze the data by querying against individual fields. Which three databases meet your requirements? (Choose three.)

Options:

A.

Redis

B.

HBase

C.

MySQL

D.

MongoDB

E.

Cassandra

F.

HDFS with Hive

Buy Now
Questions 64

Your company is loading comma-separated values (CSV) files into Google BigQuery. The data is fully imported successfully; however, the imported data is not matching byte-to-byte to the source file. What is the most likely cause of this problem?

Options:

A.

The CSV data loaded in BigQuery is not flagged as CSV.

B.

The CSV data has invalid rows that were skipped on import.

C.

The CSV data loaded in BigQuery is not using BigQuery’s default encoding.

D.

The CSV data has not gone through an ETL phase before loading into BigQuery.

Buy Now
Questions 65

You work for a manufacturing plant that batches application log files together into a single log file once a day at 2:00 AM. You have written a Google Cloud Dataflow job to process that log file. You need to make sure the log file in processed once per day as inexpensively as possible. What should you do?

Options:

A.

Change the processing job to use Google Cloud Dataproc instead.

B.

Manually start the Cloud Dataflow job each morning when you get into the office.

C.

Create a cron job with Google App Engine Cron Service to run the Cloud Dataflow job.

D.

Configure the Cloud Dataflow job as a streaming job so that it processes the log data immediately.

Buy Now
Questions 66

You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:

The user profile: What the user likes and doesn’t like to eat

The user account information: Name, address, preferred meal times

The order information: When orders are made, from where, to whom

The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?

Options:

A.

BigQuery

B.

Cloud SQL

C.

Cloud Bigtable

D.

Cloud Datastore

Buy Now
Questions 67

MJTelco needs you to create a schema in Google Bigtable that will allow for the historical analysis of the last 2 years of records. Each record that comes in is sent every 15 minutes, and contains a unique identifier of the device and a data record. The most common query is for all the data for a given device for a given day. Which schema should you use?

Options:

A.

Rowkey: date#device_idColumn data: data_point

B.

Rowkey: dateColumn data: device_id, data_point

C.

Rowkey: device_idColumn data: date, data_point

D.

Rowkey: data_pointColumn data: device_id, date

E.

Rowkey: date#data_pointColumn data: device_id

Buy Now
Exam Name: Google Professional Data Engineer Exam
Last Update: Feb 21, 2026
Questions: 400
Professional-Data-Engineer pdf

Professional-Data-Engineer PDF

$25.5  $84.99
Professional-Data-Engineer Engine

Professional-Data-Engineer Testing Engine

$30  $99.99
Professional-Data-Engineer PDF + Engine

Professional-Data-Engineer PDF + Testing Engine

$40.5  $134.99