Summer Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: geek65

Professional-Data-Engineer Google Professional Data Engineer Exam Questions and Answers

Questions 4

The Dataflow SDKs have been recently transitioned into which Apache service?

Options:

A.

Apache Spark

B.

Apache Hadoop

C.

Apache Kafka

D.

Apache Beam

Buy Now
Questions 5

Flowlogistic’s management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system. You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?

Options:

A.

Cloud Pub/Sub, Cloud Dataflow, and Cloud Storage

B.

Cloud Pub/Sub, Cloud Dataflow, and Local SSD

C.

Cloud Pub/Sub, Cloud SQL, and Cloud Storage

D.

Cloud Load Balancing, Cloud Dataflow, and Cloud Storage

Buy Now
Questions 6

Flowlogistic’s CEO wants to gain rapid insight into their customer base so his sales team can be better informed in the field. This team is not very technical, so they’ve purchased a visualization tool to simplify the creation of BigQuery reports. However, they’ve been overwhelmed by all thedata in the table, and are spending a lot of money on queries trying to find the data they need. You want to solve their problem in the most cost-effective way. What should you do?

Options:

A.

Export the data into a Google Sheet for virtualization.

B.

Create an additional table with only the necessary columns.

C.

Create a view on the table to present to the virtualization tool.

D.

Create identity and access management (IAM) roles on the appropriate columns, so only they appear in a query.

Buy Now
Questions 7

Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?

Options:

A.

Store the common data in BigQuery as partitioned tables.

B.

Store the common data in BigQuery and expose authorized views.

C.

Store the common data encoded as Avro in Google Cloud Storage.

D.

Store he common data in the HDFS storage for a Google Cloud Dataproc cluster.

Buy Now
Questions 8

For the best possible performance, what is the recommended zone for your Compute Engine instance and Cloud Bigtable instance?

Options:

A.

Have the Compute Engine instance in the furthest zone from the Cloud Bigtable instance.

B.

Have both the Compute Engine instance and the Cloud Bigtable instance to be in different zones.

C.

Have both the Compute Engine instance and the Cloud Bigtable instance to be in the same zone.

D.

Have the Cloud Bigtable instance to be in the same zone as all of the consumers of your data.

Buy Now
Questions 9

Why do you need to split a machine learning dataset into training data and test data?

Options:

A.

So you can try two different sets of features

B.

To make sure your model is generalized for more than just the training data

C.

To allow you to create unit tests in your code

D.

So you can use one dataset for a wide model and one for a deep model

Buy Now
Questions 10

You are developing an application that uses a recommendation engine on Google Cloud. Your solution should display new videos to customers based on past views. Your solution needs to generate labels for the entities in videos that the customer has viewed. Your design must be able to provide very fast filtering suggestions based on data from other customer preferences on several TB of data. What should you do?

Options:

A.

Build and train a complex classification model with Spark MLlib to generate labels and filter the results.

Deploy the models using Cloud Dataproc. Call the model from your application.

B.

Build and train a classification model with Spark MLlib to generate labels. Build and train a second

classification model with Spark MLlib to filter results to match customer preferences. Deploy the models

using Cloud Dataproc. Call the models from your application.

C.

Build an application that calls the Cloud Video Intelligence API to generate labels. Store data in Cloud

Bigtable, and filter the predicted labels to match the user’s viewing history to generate preferences.

D.

Build an application that calls the Cloud Video Intelligence API to generate labels. Store data in Cloud

SQL, and join and filter the predicted labels to match the user’s viewing history to generate preferences.

Buy Now
Questions 11

You are planning to migrate your current on-premises Apache Hadoop deployment to the cloud. You need to ensure that the deployment is as fault-tolerant and cost-effective as possible for long-running batch jobs. You want to use a managed service. What should you do?

Options:

A.

Deploy a Cloud Dataproc cluster. Use a standard persistent disk and 50% preemptible workers. Store data in Cloud Storage, and change references in scripts from hdfs:// to gs://

B.

Deploy a Cloud Dataproc cluster. Use an SSD persistent disk and 50% preemptible workers. Store data in Cloud Storage, and change references in scripts from hdfs:// to gs://

C.

Install Hadoop and Spark on a 10-node Compute Engine instance group with standard instances. Install the Cloud Storage connector, and store the data in Cloud Storage. Change references in scripts from hdfs:// to gs://

D.

Install Hadoop and Spark on a 10-node Compute Engine instance group with preemptible instances. Store data in HDFS. Change references in scripts from hdfs:// to gs://

Buy Now
Questions 12

You are creating a new pipeline in Google Cloud to stream IoT data from Cloud Pub/Sub through Cloud Dataflow to BigQuery. While previewing the data, you notice that roughly 2% of the data appears to be corrupt. You need to modify the Cloud Dataflow pipeline to filter out this corrupt data. What should you do?

Options:

A.

Add a SideInput that returns a Boolean if the element is corrupt.

B.

Add a ParDo transform in Cloud Dataflow to discard corrupt elements.

C.

Add a Partition transform in Cloud Dataflow to separate valid data from corrupt data.

D.

Add a GroupByKey transform in Cloud Dataflow to group all of the valid data together and discard the rest.

Buy Now
Questions 13

You are implementing a chatbot to help an online retailer streamline their customer service. The chatbot must be able to respond to both text and voice inquiries. You are looking for a low-code or no-code option, and you want to be able to easily train the chatbot to provide answers to keywords. What should you do?

Options:

A.

Use the Speech-to-Text API to build a Python application in App Engine.

B.

Use the Speech-to-Text API to build a Python application in a Compute Engine instance.

C.

Use Dialogflow for simple queries and the Speech-to-Text API for complex queries.

D.

Use Dialogflow to implement the chatbot. defining the intents based on the most common queries collected.

Buy Now
Questions 14

If a dataset contains rows with individual people and columns for year of birth, country, and income, how many of the columns are continuous and how many are categorical?

Options:

A.

1 continuous and 2 categorical

B.

3 categorical

C.

3 continuous

D.

2 continuous and 1 categorical

Buy Now
Questions 15

Which SQL keyword can be used to reduce the number of columns processed by BigQuery?

Options:

A.

BETWEEN

B.

WHERE

C.

SELECT

D.

LIMIT

Buy Now
Questions 16

You are developing a software application using Google's Dataflow SDK, and want to use conditional, for loops and other complex programming structures to create a branching pipeline. Which component will be used for the data processing operation?

Options:

A.

PCollection

B.

Transform

C.

Pipeline

D.

Sink API

Buy Now
Questions 17

Which row keys are likely to cause a disproportionate number of reads and/or writes on a particular node in a Bigtable cluster (select 2 answers)?

Options:

A.

A sequential numeric ID

B.

A timestamp followed by a stock symbol

C.

A non-sequential numeric ID

D.

A stock symbol followed by a timestamp

Buy Now
Questions 18

When a Cloud Bigtable node fails, ____ is lost.

Options:

A.

all data

B.

no data

C.

the last transaction

D.

the time dimension

Buy Now
Questions 19

Which of these is NOT a way to customize the software on Dataproc cluster instances?

Options:

A.

Set initialization actions

B.

Modify configuration files using cluster properties

C.

Configure the cluster using Cloud Deployment Manager

D.

Log into the master node and make changes from there

Buy Now
Questions 20

How would you query specific partitions in a BigQuery table?

Options:

A.

Use the DAY column in the WHERE clause

B.

Use the EXTRACT(DAY) clause

C.

Use the __PARTITIONTIME pseudo-column in the WHERE clause

D.

Use DATE BETWEEN in the WHERE clause

Buy Now
Questions 21

When you design a Google Cloud Bigtable schema it is recommended that you _________.

Options:

A.

Avoid schema designs that are based on NoSQL concepts

B.

Create schema designs that are based on a relational database design

C.

Avoid schema designs that require atomicity across rows

D.

Create schema designs that require atomicity across rows

Buy Now
Questions 22

Does Dataflow process batch data pipelines or streaming data pipelines?

Options:

A.

Only Batch Data Pipelines

B.

Both Batch and Streaming Data Pipelines

C.

Only Streaming Data Pipelines

D.

None of the above

Buy Now
Questions 23

You need to choose a database for a new project that has the following requirements:

    Fully managed

    Able to automatically scale up

    Transactionally consistent

    Able to scale up to 6 TB

    Able to be queried using SQL

Which database do you choose?

Options:

A.

Cloud SQL

B.

Cloud Bigtable

C.

Cloud Spanner

D.

Cloud Datastore

Buy Now
Questions 24

Cloud Bigtable is Google's ______ Big Data database service.

Options:

A.

Relational

B.

mySQL

C.

NoSQL

D.

SQL Server

Buy Now
Questions 25

Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.

Which approach should you take?

Options:

A.

Attach the timestamp on each message in the Cloud Pub/Sub subscriber application as they are received.

B.

Attach the timestamp and Package ID on the outbound message from each publisher device as they are sent to Clod Pub/Sub.

C.

Use the NOW () function in BigQuery to record the event’s time.

D.

Use the automatically generated timestamp from Cloud Pub/Sub to order the data.

Buy Now
Questions 26

You create a new report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. It is company policy to ensure employees can view only the data associated with their region, so you create and populate a table for each region. You need to enforce the regional access policy to the data.

Which two actions should you take? (Choose two.)

Options:

A.

Ensure all the tables are included in global dataset.

B.

Ensure each table is included in a dataset for a region.

C.

Adjust the settings for each table to allow a related region-based security group view access.

D.

Adjust the settings for each view to allow a related region-based security group view access.

E.

Adjust the settings for each dataset to allow a related region-based security group view access.

Buy Now
Questions 27

An aerospace company uses a proprietary data format to store its night data. You need to connect this new data source to BigQuery and stream the data into BigQuery. You want to efficiency import the data into BigQuery where consuming as few resources as possible. What should you do?

Options:

A.

Use a standard Dataflow pipeline to store the raw data m BigQuery and then transform the format later when the data is used

B.

Write a she script that triggers a Cloud Function that performs periodic ETL batch jobs on the new data source

C.

Use Apache Hive to write a Dataproc job that streams the data into BigQuery in CSV format

D.

Use an Apache Beam custom connector to write a Dataflow pipeline that streams the data into BigQuery in Avro format

Buy Now
Questions 28

Which of these operations can you perform from the BigQuery Web UI?

Options:

A.

Upload a file in SQL format.

B.

Load data with nested and repeated fields.

C.

Upload a 20 MB file.

D.

Upload multiple files using a wildcard.

Buy Now
Questions 29

You are developing an application on Google Cloud that will automatically generate subject labels for users’ blog posts. You are under competitive pressure to add this feature quickly, and you have no additional developer resources. No one on your team has experience with machine learning. What should you do?

Options:

A.

Call the Cloud Natural Language API from your application. Process the generated Entity Analysis as

labels.

B.

Call the Cloud Natural Language API from your application. Process the generated Sentiment Analysis as labels.

C.

Build and train a text classification model using TensorFlow. Deploy the model using Cloud Machine

Learning Engine. Call the model from your application and process the results as labels.

D.

Build and train a text classification model using TensorFlow. Deploy the model using a Kubernetes Engine cluster. Call the model from your application and process the results as labels.

Buy Now
Questions 30

You are developing a new deep teaming model that predicts a customer's likelihood to buy on your ecommerce site. Alter running an evaluation of the model against both the original training data and new test data, you find that your model is overfitting the data. You want to improve the accuracy of the model when predicting new data. What should you do?

Options:

A.

Increase the size of the training dataset, and increase the number of input features.

B.

Increase the size of the training dataset, and decrease the number of input features.

C.

Reduce the size of the training dataset, and increase the number of input features.

D.

Reduce the size of the training dataset, and decrease the number of input features.

Buy Now
Questions 31

You have a variety of files in Cloud Storage that your data science team wants to use in their models Currently, users do not have a method to explore, cleanse, and validate the data in Cloud Storage. You are looking for a low code solution that can be used by your data science team to quickly cleanse and explore data within Cloud Storage. What should you do?

Options:

A.

Load the data into BigQuery and use SQL to transform the data as necessary Provide the data science team access to staging tables to explore the raw data.

B.

Provide the data science team access to Dataflow to create a pipeline to prepare and validate the raw data and load data into BigQuery for data exploration.

C.

Provide the data science team access to Dataprep to prepare, validate, and explore the data within Cloud Storage.

D.

Create an external table in BigQuery and use SQL to transform the data as necessary Provide the data science team access to the external tables to explore the raw data.

Buy Now
Questions 32

You maintain ETL pipelines. You notice that a streaming pipeline running on Dataflow is taking a long time to process incoming data, which causes output delays. You also noticed that the pipeline graph was automatically optimized by Dataflow and merged into one step. You want to identify where the potential bottleneck is occurring. What should you do?

Options:

A.

Insert a Reshuffle operation after each processing step, and monitor the execution details in the Dataflow console.

B.

Log debug information in each ParDo function, and analyze the logs at execution time.

C.

Insert output sinks after each key processing step, and observe the writing throughput of each block.

D.

Verify that the Dataflow service accounts have appropriate permissions to write the processed data to the output sinks

Buy Now
Questions 33

You decided to use Cloud Datastore to ingest vehicle telemetry data in real time. You want to build a storage system that will account for the long-term data growth, while keeping the costs low. You also want to create snapshots of the data periodically, so that you can make a point-in-time (PIT) recovery, or clone a copy of the data for Cloud Datastore in a different environment. You want to archive these snapshots for a long time. Which two methods can accomplish this? Choose 2 answers.

Options:

A.

Use managed export, and store the data in a Cloud Storage bucket using Nearline or Coldline class.

B.

Use managed exportm, and then import to Cloud Datastore in a separate project under a unique namespace reserved for that export.

C.

Use managed export, and then import the data into a BigQuery table created just for that export, and delete temporary export files.

D.

Write an application that uses Cloud Datastore client libraries to read all the entities. Treat each entity as a BigQuery table row via BigQuery streaming insert. Assign an export timestamp for each export, and attach it as an extra column for each row. Make sure that the BigQuery table is partitioned using the export timestamp column.

E.

Write an application that uses Cloud Datastore client libraries to read all the entities. Format the exported data into a JSON file. Apply compression before storing the data in Cloud Source Repositories.

Buy Now
Questions 34

Given the record streams MJTelco is interested in ingesting per day, they are concerned about the cost of Google BigQuery increasing. MJTelco asks you to provide a design solution. They require a single large data table called tracking_table. Additionally, they want to minimize the cost of daily queries while performing fine-grained analysis of each day’s events. They also want to use streaming ingestion. What should you do?

Options:

A.

Create a table called tracking_table and include a DATE column.

B.

Create a partitioned table called tracking_table and include a TIMESTAMP column.

C.

Create sharded tables for each day following the pattern tracking_table_YYYYMMDD.

D.

Create a table called tracking_table with a TIMESTAMP column to represent the day.

Buy Now
Questions 35

A live TV show asks viewers to cast votes using their mobile phones. The event generates a large volume of data during a 3 minute period. You are in charge of the Voting restructure* and must ensure that the platform can handle the load and Hal all votes are processed. You must display partial results write voting is open. After voting doses you need to count the votes exactly once white optimizing cost. What should you do?

Options:

A.

Create a Memorystore instance with a high availability (HA) configuration

B.

Write votes to a Pub Sub tope and have Cloud Functions subscribe to it and write voles to BigQuery

C.

Write votes to a Pub/Sub tope and toad into both Bigtable and BigQuery via a Dataflow pipeline Query Bigtable for real-time results and BigQuery for later analysis Shutdown the Bigtable instance when voting concludes

D Create a Cloud SQL for PostgreSQL database with high availability (HA) configuration and multiple read replicas

Buy Now
Questions 36

You need to compose visualization for operations teams with the following requirements:

    Telemetry must include data from all 50,000 installations for the most recent 6 weeks (sampling once every minute)

    The report must not be more than 3 hours delayed from live data.

    The actionable report should only show suboptimal links.

    Most suboptimal links should be sorted to the top.

    Suboptimal links can be grouped and filtered by regional geography.

    User response time to load the report must be <5 seconds.

You create a data source to store the last 6 weeks of data, and create visualizations that allow viewers to see multiple date ranges, distinct geographic regions, and unique installation types. You always show the latest data without any changes to your visualizations. You want to avoid creating and updating new visualizations each month. What should you do?

Options:

A.

Look through the current data and compose a series of charts and tables, one for each possible

combination of criteria.

B.

Look through the current data and compose a small set of generalized charts and tables bound to criteria filters that allow value selection.

C.

Export the data to a spreadsheet, compose a series of charts and tables, one for each possible

combination of criteria, and spread them across multiple tabs.

D.

Load the data into relational database tables, write a Google App Engine application that queries all rows, summarizes the data across each criteria, and then renders results using the Google Charts and visualization API.

Buy Now
Questions 37

MJTelco is building a custom interface to share data. They have these requirements:

    They need to do aggregations over their petabyte-scale datasets.

    They need to scan specific time range rows with a very fast response time (milliseconds).

Which combination of Google Cloud Platform products should you recommend?

Options:

A.

Cloud Datastore and Cloud Bigtable

B.

Cloud Bigtable and Cloud SQL

C.

BigQuery and Cloud Bigtable

D.

BigQuery and Cloud Storage

Buy Now
Questions 38

MJTelco needs you to create a schema in Google Bigtable that will allow for the historical analysis of the last 2 years of records. Each record that comes in is sent every 15 minutes, and contains a unique identifier of the device and a data record. The most common query is for all the data for a given device for a given day. Which schema should you use?

Options:

A.

Rowkey: date#device_idColumn data: data_point

B.

Rowkey: dateColumn data: device_id, data_point

C.

Rowkey: device_idColumn data: date, data_point

D.

Rowkey: data_pointColumn data: device_id, date

E.

Rowkey: date#data_pointColumn data: device_id

Buy Now
Questions 39

MJTelco’s Google Cloud Dataflow pipeline is now ready to start receiving data from the 50,000 installations. You want to allow Cloud Dataflow to scale its compute power up as required. Which Cloud Dataflow pipeline configuration setting should you update?

Options:

A.

The zone

B.

The number of workers

C.

The disk size per worker

D.

The maximum number of workers

Buy Now
Questions 40

You need to compose visualizations for operations teams with the following requirements:

Which approach meets the requirements?

Options:

A.

Load the data into Google Sheets, use formulas to calculate a metric, and use filters/sorting to show only suboptimal links in a table.

B.

Load the data into Google BigQuery tables, write Google Apps Script that queries the data, calculates the metric, and shows only suboptimal rows in a table in Google Sheets.

C.

Load the data into Google Cloud Datastore tables, write a Google App Engine Application that queries all rows, applies a function to derive the metric, and then renders results in a table using the Google charts and visualization API.

D.

Load the data into Google BigQuery tables, write a Google Data Studio 360 report that connects to your data, calculates a metric, and then uses a filter expression to show only suboptimal rows in a table.

Buy Now
Questions 41

Your company uses a proprietary system to send inventory data every 6 hours to a data ingestion service in the cloud. Transmitted data includes a payload of several fields and the timestamp of the transmission. If there are any concerns about a transmission, the system re-transmits the data. How should you deduplicate the data most efficiency?

Options:

A.

Assign global unique identifiers (GUID) to each data entry.

B.

Compute the hash value of each data entry, and compare it with all historical data.

C.

Store each data entry as the primary key in a separate database and apply an index.

D.

Maintain a database table to store the hash value and other metadata for each data entry.

Buy Now
Questions 42

You work for a car manufacturer and have set up a data pipeline using Google Cloud Pub/Sub to capture anomalous sensor events. You are using a push subscription in Cloud Pub/Sub that calls a custom HTTPS endpoint that you have created to take action of these anomalous events as they occur. Your custom HTTPS endpoint keeps getting an inordinate amount of duplicate messages. What is the most likely cause of these duplicate messages?

Options:

A.

The message body for the sensor event is too large.

B.

Your custom endpoint has an out-of-date SSL certificate.

C.

The Cloud Pub/Sub topic has too many messages published to it.

D.

Your custom endpoint is not acknowledging messages within the acknowledgement deadline.

Buy Now
Questions 43

The CUSTOM tier for Cloud Machine Learning Engine allows you to specify the number of which types of cluster nodes?

Options:

A.

Workers

B.

Masters, workers, and parameter servers

C.

Workers and parameter servers

D.

Parameter servers

Buy Now
Questions 44

Business owners at your company have given you a database of bank transactions. Each row contains the user ID, transaction type, transaction location, and transaction amount. They ask you to investigate what type of machine learning can be applied to the data. Which three machine learning applications can you use? (Choose three.)

Options:

A.

Supervised learning to determine which transactions are most likely to be fraudulent.

B.

Unsupervised learning to determine which transactions are most likely to be fraudulent.

C.

Clustering to divide the transactions into N categories based on feature similarity.

D.

Supervised learning to predict the location of a transaction.

E.

Reinforcement learning to predict the location of a transaction.

F.

Unsupervised learning to predict the location of a transaction.

Buy Now
Questions 45

You are deploying 10,000 new Internet of Things devices to collect temperature data in your warehouses globally. You need to process, store and analyze these very large datasets in real time. What should you do?

Options:

A.

Send the data to Google Cloud Datastore and then export to BigQuery.

B.

Send the data to Google Cloud Pub/Sub, stream Cloud Pub/Sub to Google Cloud Dataflow, and store the data in Google BigQuery.

C.

Send the data to Cloud Storage and then spin up an Apache Hadoop cluster as needed in Google Cloud Dataproc whenever analysis is required.

D.

Export logs in batch to Google Cloud Storage and then spin up a Google Cloud SQL instance, import the data from Cloud Storage, and run an analysis as needed.

Buy Now
Questions 46

Your software uses a simple JSON format for all messages. These messages are published to Google Cloud Pub/Sub, then processed with Google Cloud Dataflow to create a real-time dashboard for the CFO. During testing, you notice that some messages are missing in thedashboard. You check the logs, and all messages are being published to Cloud Pub/Sub successfully. What should you do next?

Options:

A.

Check the dashboard application to see if it is not displaying correctly.

B.

Run a fixed dataset through the Cloud Dataflow pipeline and analyze the output.

C.

Use Google Stackdriver Monitoring on Cloud Pub/Sub to find the missing messages.

D.

Switch Cloud Dataflow to pull messages from Cloud Pub/Sub instead of Cloud Pub/Sub pushing messages to Cloud Dataflow.

Buy Now
Questions 47

You need to store and analyze social media postings in Google BigQuery at a rate of 10,000 messages per minute in near real-time. Initially, design the application to use streaming inserts for individual postings. Your application also performs data aggregations right after the streaming inserts. You discover that the queries after streaming inserts do not exhibit strong consistency, and reports from the queries might miss in-flight data. How can you adjust your application design?

Options:

A.

Re-write the application to load accumulated data every 2 minutes.

B.

Convert the streaming insert code to batch load for individual messages.

C.

Load the original message to Google Cloud SQL, and export the table every hour to BigQuery via streaming inserts.

D.

Estimate the average latency for data availability after streaming inserts, and always run queries after waiting twice as long.

Buy Now
Questions 48

You are choosing a NoSQL database to handle telemetry data submitted from millions of Internet-of-Things (IoT) devices. The volume of data is growing at 100 TB per year, and each data entry has about 100 attributes. The data processing pipeline does not require atomicity, consistency, isolation, and durability (ACID). However, high availability and low latency are required.

You need to analyze the data by querying against individual fields. Which three databases meet your requirements? (Choose three.)

Options:

A.

Redis

B.

HBase

C.

MySQL

D.

MongoDB

E.

Cassandra

F.

HDFS with Hive

Buy Now
Questions 49

You are working on a sensitive project involving private user data. You have set up a project on Google Cloud Platform to house your work internally. An external consultant is going to assist with coding a complex transformation in a Google Cloud Dataflow pipeline for your project. How should you maintain users’ privacy?

Options:

A.

Grant the consultant the Viewer role on the project.

B.

Grant the consultant the Cloud Dataflow Developer role on the project.

C.

Create a service account and allow the consultant to log on with it.

D.

Create an anonymized sample of the data for the consultant to work with in a different project.

Buy Now
Questions 50

Your company produces 20,000 files every hour. Each data file is formatted as a comma separated values (CSV) file that is less than 4 KB. All files must be ingested on Google Cloud Platform before they can be processed. Your company site has a 200 ms latency to Google Cloud, and your Internet connection bandwidth is limited as 50 Mbps. You currently deploy a secure FTP (SFTP) server on a virtual machine in Google Compute Engine as the data ingestion point. A local SFTP client runs on a dedicated machine to transmit the CSV files as is. The goal is to make reports with data from the previous day available to the executives by 10:00 a.m. each day. This design is barely able to keep up with the current volume, even though the bandwidth utilization is rather low.

You are told that due to seasonality, your company expects the number of files to double for the next three months. Which two actions should you take? (choose two.)

Options:

A.

Introduce data compression for each file to increase the rate file of file transfer.

B.

Contact your internet service provider (ISP) to increase your maximum bandwidth to at least 100 Mbps.

C.

Redesign the data ingestion process to use gsutil tool to send the CSV files to a storage bucket in parallel.

D.

Assemble 1,000 files into a tape archive (TAR) file. Transmit the TAR files instead, and disassemble the CSV files in the cloud upon receiving them.

E.

Create an S3-compatible storage endpoint in your network, and use Google Cloud Storage Transfer Service to transfer on-premices data to the designated storage bucket.

Buy Now
Questions 51

You work for an economic consulting firm that helps companies identify economic trends as they happen. As part of your analysis, you use Google BigQuery to correlate customer data with the average prices of the 100 most common goods sold, including bread, gasoline, milk, and others. The average prices of these goods are updated every 30 minutes. You want to make sure this data stays up to date so you can combine it with other data in BigQuery as cheaply as possible. What should you do?

Options:

A.

Load the data every 30 minutes into a new partitioned table in BigQuery.

B.

Store and update the data in a regional Google Cloud Storage bucket and create a federated data source in BigQuery

C.

Store the data in Google Cloud Datastore. Use Google Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Cloud Datastore

D.

Store the data in a file in a regional Google Cloud Storage bucket. Use Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Google Cloud Storage.

Buy Now
Questions 52

Your company has recently grown rapidly and now ingesting data at a significantly higher rate than it was previously. You manage the daily batch MapReduce analytics jobs in Apache Hadoop. However, the recent increase in data has meant the batch jobs are falling behind. You were asked to recommend ways the development team could increase the responsiveness of the analytics without increasing costs. What should you recommend they do?

Options:

A.

Rewrite the job in Pig.

B.

Rewrite the job in Apache Spark.

C.

Increase the size of the Hadoop cluster.

D.

Decrease the size of the Hadoop cluster but also rewrite the job in Hive.

Buy Now
Questions 53

You work for a manufacturing plant that batches application log files together into a single log file once a day at 2:00 AM. You have written a Google Cloud Dataflow job to process that log file. You need to make sure the log file in processed once per day as inexpensively as possible. What should you do?

Options:

A.

Change the processing job to use Google Cloud Dataproc instead.

B.

Manually start the Cloud Dataflow job each morning when you get into the office.

C.

Create a cron job with Google App Engine Cron Service to run the Cloud Dataflow job.

D.

Configure the Cloud Dataflow job as a streaming job so that it processes the log data immediately.

Buy Now
Questions 54

You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:

    The user profile: What the user likes and doesn’t like to eat

    The user account information: Name, address, preferred meal times

    The order information: When orders are made, from where, to whom

The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?

Options:

A.

BigQuery

B.

Cloud SQL

C.

Cloud Bigtable

D.

Cloud Datastore

Buy Now
Questions 55

You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?

Options:

A.

Create a view in BigQuery that concatenates the FirstName and LastName field values to produce the FullName.

B.

Add a new column called FullName to the Users table. Run an UPDATE statement that updates the FullName column for each user with the concatenation of the FirstName and LastName values.

C.

Create a Google Cloud Dataflow job that queries BigQuery for the entire Users table, concatenates the FirstName value and LastName value for each user, and loads the proper values for FirstName, LastName, and FullName into a new table in BigQuery.

D.

Use BigQuery to export the data for the table to a CSV file. Create a Google Cloud Dataproc job to process the CSV file and output a new CSV file containing the proper values for FirstName, LastName and FullName. Run a BigQuery load job to load the new CSV file into BigQuery.

Buy Now
Questions 56

Your company is loading comma-separated values (CSV) files into Google BigQuery. The data is fully imported successfully; however, the imported data is not matching byte-to-byte to the source file. What is the most likely cause of this problem?

Options:

A.

The CSV data loaded in BigQuery is not flagged as CSV.

B.

The CSV data has invalid rows that were skipped on import.

C.

The CSV data loaded in BigQuery is not using BigQuery’s default encoding.

D.

The CSV data has not gone through an ETL phase before loading into BigQuery.

Buy Now
Questions 57

You are deploying a new storage system for your mobile application, which is a media streaming service. You decide the best fit is Google Cloud Datastore. You have entities with multiple properties, some of which can take on multiple values. For example, in the entity ‘Movie’ the property ‘actors’ and the property ‘tags’ have multiple values but the property ‘date released’ does not. A typical query would ask for all movies with actor= ordered by date_released or all movies with tag=Comedy ordered by date_released. How should you avoid a combinatorial explosion in the number of indexes?

Options:

A.

Option A

B.

Option B.

C.

Option C

D.

Option D

Buy Now
Exam Name: Google Professional Data Engineer Exam
Last Update: Aug 17, 2025
Questions: 376
Professional-Data-Engineer pdf

Professional-Data-Engineer PDF

$29.75  $84.99
Professional-Data-Engineer Engine

Professional-Data-Engineer Testing Engine

$35  $99.99
Professional-Data-Engineer PDF + Engine

Professional-Data-Engineer PDF + Testing Engine

$47.25  $134.99