Summer Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: geek65

MLS-C01 AWS Certified Machine Learning - Specialty Questions and Answers

Questions 4

A Machine Learning Specialist has created a deep learning neural network model that performs well on the training data but performs poorly on the test data.

Which of the following methods should the Specialist consider using to correct this? (Select THREE.)

Options:

A.

Decrease regularization.

B.

Increase regularization.

C.

Increase dropout.

D.

Decrease dropout.

E.

Increase feature combinations.

F.

Decrease feature combinations.

Buy Now
Questions 5

An ecommerce company has observed that customers who use the company's website rarely view items that the website recommends to customers. The company wants to recommend items to customers that customers are more likely to want to purchase.

Which solution will meet this requirement in the SHORTEST amount of time?

Options:

A.

Host the company's website on Amazon EC2 Accelerated Computing instances to increase the website response speed.

B.

Host the company's website on Amazon EC2 GPU-based instances to increase the speed of the website's search tool.

C.

Integrate Amazon Personalize into the company's website to provide customers with personalized recommendations.

D.

Use Amazon SageMaker to train a Neural Collaborative Filtering (NCF) model to make product recommendations.

Buy Now
Questions 6

A machine learning specialist works for a fruit processing company and needs to build a system that

categorizes apples into three types. The specialist has collected a dataset that contains 150 images for each type of apple and applied transfer learning on a neural network that was pretrained on ImageNet with this dataset.

The company requires at least 85% accuracy to make use of the model.

After an exhaustive grid search, the optimal hyperparameters produced the following:

68% accuracy on the training set

67% accuracy on the validation set

What can the machine learning specialist do to improve the system’s accuracy?

Options:

A.

Upload the model to an Amazon SageMaker notebook instance and use the Amazon SageMaker HPO feature to optimize the model’s hyperparameters.

B.

Add more data to the training set and retrain the model using transfer learning to reduce the bias.

C.

Use a neural network model with more layers that are pretrained on ImageNet and apply transfer learning to increase the variance.

D.

Train a new model using the current neural network architecture.

Buy Now
Questions 7

A large consumer goods manufacturer has the following products on sale:

• 34 different toothpaste variants

• 48 different toothbrush variants

• 43 different mouthwash variants

The entire sales history of all these products is available in Amazon S3. Currently, the company is using custom-built autoregressive integrated moving average (ARIMA) models to forecast demand for these products. The company wants to predict the demand for a new product that will soon be launched.

Which solution should a machine learning specialist apply?

Options:

A.

Train a custom ARIMA model to forecast demand for the new product.

B.

Train an Amazon SageMaker DeepAR algorithm to forecast demand for the new product.

C.

Train an Amazon SageMaker k-means clustering algorithm to forecast demand for the new product.

D.

Train a custom XGBoost model to forecast demand for the new product.

Buy Now
Questions 8

Given the following confusion matrix for a movie classification model, what is the true class frequency for Romance and the predicted class frequency for Adventure?

Options:

A.

The true class frequency for Romance is 77.56% and the predicted class frequency for Adventure is 20 85%

B.

The true class frequency for Romance is 57.92% and the predicted class frequency for Adventure is 1312%

C.

The true class frequency for Romance is 0 78 and the predicted class frequency for Adventure is (0 47 - 0.32).

D.

The true class frequency for Romance is 77.56% * 0.78 and the predicted class frequency for Adventure is 20 85% ' 0.32

Buy Now
Questions 9

A Machine Learning Specialist is building a supervised model that will evaluate customers' satisfaction with their mobile phone service based on recent usage The model's output should infer whether or not a customer is likely to switch to a competitor in the next 30 days

Which of the following modeling techniques should the Specialist use1?

Options:

A.

Time-series prediction

B.

Anomaly detection

C.

Binary classification

D.

Regression

Buy Now
Questions 10

A Machine Learning Specialist is building a logistic regression model that will predict whether or not a person will order a pizza. The Specialist is trying to build the optimal model with an ideal classification threshold.

What model evaluation technique should the Specialist use to understand how different classification thresholds will impact the model's performance?

Options:

A.

Receiver operating characteristic (ROC) curve

B.

Misclassification rate

C.

Root Mean Square Error (RM&)

D.

L1 norm

Buy Now
Questions 11

A machine learning specialist is preparing data for training on Amazon SageMaker. The specialist is using one of the SageMaker built-in algorithms for the training. The dataset is stored in .CSV format and is transformed into a numpy.array, which appears to be negatively affecting the speed of the training.

What should the specialist do to optimize the data for training on SageMaker?

Options:

A.

Use the SageMaker batch transform feature to transform the training data into a DataFrame.

B.

Use AWS Glue to compress the data into the Apache Parquet format.

C.

Transform the dataset into the RecordIO protobuf format.

D.

Use the SageMaker hyperparameter optimization feature to automatically optimize the data.

Buy Now
Questions 12

A Machine Learning Specialist wants to bring a custom algorithm to Amazon SageMaker. The Specialist

implements the algorithm in a Docker container supported by Amazon SageMaker.

How should the Specialist package the Docker container so that Amazon SageMaker can launch the training

correctly?

Options:

A.

Modify the bash_profile file in the container and add a bash command to start the training program

B.

Use CMD config in the Dockerfile to add the training program as a CMD of the image

C.

Configure the training program as an ENTRYPOINT named train

D.

Copy the training program to directory /opt/ml/train

Buy Now
Questions 13

A company is building a predictive maintenance model for its warehouse equipment. The model must predict the probability of failure of all machines in the warehouse. The company has collected 10.000 event samples within 3 months. The event samples include 100 failure cases that are evenly distributed across 50 different machine types.

How should the company prepare the data for the model to improve the model's accuracy?

Options:

A.

Adjust the class weight to account for each machine type.

B.

Oversample the failure cases by using the Synthetic Minority Oversampling Technique (SMOTE).

C.

Undersample the non-failure events. Stratify the non-failure events by machine type.

D.

Undersample the non-failure events by using the Synthetic Minority Oversampling Technique (SMOTE).

Buy Now
Questions 14

A credit card company wants to build a credit scoring model to help predict whether a new credit card applicant

will default on a credit card payment. The company has collected data from a large number of sources with

thousands of raw attributes. Early experiments to train a classification model revealed that many attributes are

highly correlated, the large number of features slows down the training speed significantly, and that there are

some overfitting issues.

The Data Scientist on this project would like to speed up the model training time without losing a lot of

information from the original dataset.

Which feature engineering technique should the Data Scientist use to meet the objectives?

Options:

A.

Run self-correlation on all features and remove highly correlated features

B.

Normalize all numerical values to be between 0 and 1

C.

Use an autoencoder or principal component analysis (PCA) to replace original features with new features

D.

Cluster raw data using k-means and use sample data from each cluster to build a new dataset

Buy Now
Questions 15

A retail company wants to update its customer support system. The company wants to implement automatic routing of customer claims to different queues to prioritize the claims by category.

Currently, an operator manually performs the category assignment and routing. After the operator classifies and routes the claim, the company stores the claim’s record in a central database. The claim’s record includes the claim’s category.

The company has no data science team or experience in the field of machine learning (ML). The company’s small development team needs a solution that requires no ML expertise.

Which solution meets these requirements?

Options:

A.

Export the database to a .csv file with two columns: claim_label and claim_text. Use the Amazon SageMaker Object2Vec algorithm and the .csv file to train a model. Use SageMaker to deploy the model to an inference endpoint. Develop a service in the application to use the inference endpoint to process incoming claims, predict the labels, and route the claims to the appropriate queue.

B.

Export the database to a .csv file with one column: claim_text. Use the Amazon SageMaker Latent Dirichlet Allocation (LDA) algorithm and the .csv file to train a model. Use the LDA algorithm to detect labels automatically. Use SageMaker to deploy the model to an inference endpoint. Develop a service in the application to use the inference endpoint to process incoming claims, predict the labels, and route the claims to the appropriate queue.

C.

Use Amazon Textract to process the database and automatically detect two columns: claim_label and claim_text. Use Amazon Comprehend custom classification and the extracted information to train the custom classifier. Develop a service in the application to use the Amazon Comprehend API to process incoming claims, predict the labels, and route the claims to the appropriate queue.

D.

Export the database to a .csv file with two columns: claim_label and claim_text. Use Amazon Comprehend custom classification and the .csv file to train the custom classifier. Develop a service in the application to use the Amazon Comprehend API to process incoming claims, predict the labels, and route the claims to the appropriate queue.

Buy Now
Questions 16

A company is using Amazon Textract to extract textual data from thousands of scanned text-heavy legal documents daily. The company uses this information to process loan applications automatically. Some of the documents fail business validation and are returned to human reviewers, who investigate the errors. This activity increases the time to process the loan applications.

What should the company do to reduce the processing time of loan applications?

Options:

A.

Configure Amazon Textract to route low-confidence predictions to Amazon SageMaker Ground Truth. Perform a manual review on those words before performing a business validation.

B.

Use an Amazon Textract synchronous operation instead of an asynchronous operation.

C.

Configure Amazon Textract to route low-confidence predictions to Amazon Augmented AI (Amazon A2I). Perform a manual review on those words before performing a business validation.

D.

Use Amazon Rekognition's feature to detect text in an image to extract the data from scanned images. Use this information to process the loan applications.

Buy Now
Questions 17

A machine learning (ML) engineer has created a feature repository in Amazon SageMaker Feature Store for the company. The company has AWS accounts for development, integration, and production. The company hosts a feature store in the development account. The company uses Amazon S3 buckets to store feature values offline. The company wants to share features and to allow the integration account and the production account to reuse the features that are in the feature repository.

Which combination of steps will meet these requirements? (Select TWO.)

Options:

A.

Create an IAM role in the development account that the integration account and production account can assume. Attach IAM policies to the role that allow access to the feature repository and the S3 buckets.

B.

Share the feature repository that is associated the S3 buckets from the development account to the integration account and the production account by using AWS Resource Access Manager (AWS RAM).

C.

Use AWS Security Token Service (AWS STS) from the integration account and the production account to retrieve credentials for the development account.

D.

Set up S3 replication between the development S3 buckets and the integration and production S3 buckets.

E.

Create an AWS PrivateLink endpoint in the development account for SageMaker.

Buy Now
Questions 18

A data scientist has a dataset of machine part images stored in Amazon Elastic File System (Amazon EFS). The data scientist needs to use Amazon SageMaker to create and train an image classification machine learning model based on this dataset. Because of budget and time constraints, management wants the data scientist to create and train a model with the least number of steps and integration work required.

How should the data scientist meet these requirements?

Options:

A.

Mount the EFS file system to a SageMaker notebook and run a script that copies the data to an Amazon FSx for Lustre file system. Run the SageMaker training job with the FSx for Lustre file system as the data source.

B.

Launch a transient Amazon EMR cluster. Configure steps to mount the EFS file system and copy the data to an Amazon S3 bucket by using S3DistCp. Run the SageMaker training job with Amazon S3 as the data source.

C.

Mount the EFS file system to an Amazon EC2 instance and use the AWS CLI to copy the data to an Amazon S3 bucket. Run the SageMaker training job with Amazon S3 as the data source.

D.

Run a SageMaker training job with an EFS file system as the data source.

Buy Now
Questions 19

A company is building a new supervised classification model in an AWS environment. The company's data science team notices that the dataset has a large quantity of variables Ail the variables are numeric. The model accuracy for training and validation is low. The model's processing time is affected by high latency The data science team needs to increase the accuracy of the model and decrease the processing.

How it should the data science team do to meet these requirements?

Options:

A.

Create new features and interaction variables.

B.

Use a principal component analysis (PCA) model.

C.

Apply normalization on the feature set.

D.

Use a multiple correspondence analysis (MCA) model

Buy Now
Questions 20

A company is using a machine learning (ML) model to recommend products to customers. An ML specialist wants to analyze the data for the most popular recommendations in four dimensions.

The ML specialist will visualize the first two dimensions as coordinates. The third dimension will be visualized as color. The ML specialist will use size to represent the fourth dimension in the visualization.

Which solution will meet these requirements?

Options:

A.

Use the Amazon SageMaker Data Wrangler bar chart feature. Use Group By to represent the third and fourth dimensions.

B.

Use the Amazon SageMaker Canvas box plot visualization. Use color and fill pattern to represent the third and fourth dimensions.

C.

Use the Amazon SageMaker Data Wrangler histogram feature. Use color and fill pattern to represent the third and fourth dimensions.

D.

Use the Amazon SageMaker Canvas scatter plot visualization. Use scatter point size and color to represent the third and fourth dimensions.

Buy Now
Questions 21

A company that manufactures mobile devices wants to determine and calibrate the appropriate sales price for its devices. The company is collecting the relevant data and is determining data features that it can use to train machine learning (ML) models. There are more than 1,000 features, and the company wants to determine the primary features that contribute to the sales price.

Which techniques should the company use for feature selection? (Choose three.)

Options:

A.

Data scaling with standardization and normalization

B.

Correlation plot with heat maps

C.

Data binning

D.

Univariate selection

E.

Feature importance with a tree-based classifier

F.

Data augmentation

Buy Now
Questions 22

A data scientist is building a linear regression model. The scientist inspects the dataset and notices that the mode of the distribution is lower than the median, and the median is lower than the mean.

Which data transformation will give the data scientist the ability to apply a linear regression model?

Options:

A.

Exponential transformation

B.

Logarithmic transformation

C.

Polynomial transformation

D.

Sinusoidal transformation

Buy Now
Questions 23

A Machine Learning Specialist needs to be able to ingest streaming data and store it in Apache Parquet files for exploration and analysis. Which of the following services would both ingest and store this data in the correct format?

Options:

A.

AWSDMS

B.

Amazon Kinesis Data Streams

C.

Amazon Kinesis Data Firehose

D.

Amazon Kinesis Data Analytics

Buy Now
Questions 24

A company's machine learning (ML) specialist is designing a scalable data storage solution for Amazon SageMaker. The company has an existing TensorFlow-based model that uses a train.py script. The model relies on static training data that is currently stored in TFRecord format.

What should the ML specialist do to provide the training data to SageMaker with the LEAST development overhead?

Options:

A.

Put the TFRecord data into an Amazon S3 bucket. Use AWS Glue or AWS Lambda to reformat the data to protobuf format and store the data in a second S3 bucket. Point the SageMaker training invocation to the second S3 bucket.

B.

Rewrite the train.py script to add a section that converts TFRecord data to protobuf format. Point the SageMaker training invocation to the local path of the data. Ingest the protobuf data instead of the TFRecord data.

C.

Use SageMaker script mode, and use train.py unchanged. Point the SageMaker training invocation to the local path of the data without reformatting the training data.

D.

Use SageMaker script mode, and use train.py unchanged. Put the TFRecord data into an Amazon S3 bucket. Point the SageMaker training invocation to the S3 bucket without reformatting the training data.

Buy Now
Questions 25

A company processes millions of orders every day. The company uses Amazon DynamoDB tables to store order information. When customers submit new orders, the new orders are immediately added to the DynamoDB tables. New orders arrive in the DynamoDB tables continuously.

A data scientist must build a peak-time prediction solution. The data scientist must also create an Amazon OuickSight dashboard to display near real-lime order insights. The data scientist needs to build a solution that will give QuickSight access to the data as soon as new order information arrives.

Which solution will meet these requirements with the LEAST delay between when a new order is processed and when QuickSight can access the new order information?

Options:

A.

Use AWS Glue to export the data from Amazon DynamoDB to Amazon S3. Configure OuickSight to access the data in Amazon S3.

B.

Use Amazon Kinesis Data Streams to export the data from Amazon DynamoDB to Amazon S3. Configure OuickSight to access the data in Amazon S3.

C.

Use an API call from OuickSight to access the data that is in Amazon DynamoDB directly

D.

Use Amazon Kinesis Data Firehose to export the data from Amazon DynamoDB to Amazon S3. Configure OuickSight to access the data in Amazon S3.

Buy Now
Questions 26

A Data Scientist is developing a machine learning model to classify whether a financial transaction is fraudulent. The labeled data available for training consists of 100,000 non-fraudulent observations and 1,000 fraudulent observations.

The Data Scientist applies the XGBoost algorithm to the data, resulting in the following confusion matrix when the trained model is applied to a previously unseen validation dataset. The accuracy of the model is 99.1%, but the Data Scientist needs to reduce the number of false negatives.

Which combination of steps should the Data Scientist take to reduce the number of false negative predictions by the model? (Choose two.)

Options:

A.

Change the XGBoost eval_metric parameter to optimize based on Root Mean Square Error (RMSE).

B.

Increase the XGBoost scale_pos_weight parameter to adjust the balance of positive and negative weights.

C.

Increase the XGBoost max_depth parameter because the model is currently underfitting the data.

D.

Change the XGBoost eval_metric parameter to optimize based on Area Under the ROC Curve (AUC).

E.

Decrease the XGBoost max_depth parameter because the model is currently overfitting the data.

Buy Now
Questions 27

An aircraft engine manufacturing company is measuring 200 performance metrics in a time-series. Engineers

want to detect critical manufacturing defects in near-real time during testing. All of the data needs to be stored

for offline analysis.

What approach would be the MOST effective to perform near-real time defect detection?

Options:

A.

Use AWS IoT Analytics for ingestion, storage, and further analysis. Use Jupyter notebooks from withinAWS IoT Analytics to carry out analysis for anomalies.

B.

Use Amazon S3 for ingestion, storage, and further analysis. Use an Amazon EMR cluster to carry outApache Spark ML k-means clustering to determine anomalies.

C.

Use Amazon S3 for ingestion, storage, and further analysis. Use the Amazon SageMaker Random CutForest (RCF) algorithm to determine anomalies.

D.

Use Amazon Kinesis Data Firehose for ingestion and Amazon Kinesis Data Analytics Random Cut Forest(RCF) to perform anomaly detection. Use Kinesis Data Firehose to store data in Amazon S3 for furtheranalysis.

Buy Now
Questions 28

A company's Machine Learning Specialist needs to improve the training speed of a time-series forecasting model using TensorFlow. The training is currently implemented on a single-GPU machine and takes approximately 23 hours to complete. The training needs to be run daily.

The model accuracy js acceptable, but the company anticipates a continuous increase in the size of the training data and a need to update the model on an hourly, rather than a daily, basis. The company also wants to minimize coding effort and infrastructure changes

What should the Machine Learning Specialist do to the training solution to allow it to scale for future demand?

Options:

A.

Do not change the TensorFlow code. Change the machine to one with a more powerful GPU to speed up the training.

B.

Change the TensorFlow code to implement a Horovod distributed framework supported by Amazon SageMaker. Parallelize the training to as many machines as needed to achieve the business goals.

C.

Switch to using a built-in AWS SageMaker DeepAR model. Parallelize the training to as many machines as needed to achieve the business goals.

D.

Move the training to Amazon EMR and distribute the workload to as many machines as needed to achieve the business goals.

Buy Now
Questions 29

A Data Scientist received a set of insurance records, each consisting of a record ID, the final outcome among 200 categories, and the date of the final outcome. Some partial information on claim contents is also provided, but only for a few of the 200 categories. For each outcome category, there are hundreds of records distributed over the past 3 years. The Data Scientist wants to predict how many claims to expect in each category from month to month, a few months in advance.

What type of machine learning model should be used?

Options:

A.

Classification month-to-month using supervised learning of the 200 categories based on claim contents.

B.

Reinforcement learning using claim IDs and timestamps where the agent will identify how many claims in each category to expect from month to month.

C.

Forecasting using claim IDs and timestamps to identify how many claims in each category to expect from month to month.

D.

Classification with supervised learning of the categories for which partial information on claim contents is provided, and forecasting using claim IDs and timestamps for all other categories.

Buy Now
Questions 30

A machine learning engineer is building a bird classification model. The engineer randomly separates a dataset into a training dataset and a validation dataset. During the training phase, the model achieves very high accuracy. However, the model did not generalize well during validation of the validation dataset. The engineer realizes that the original dataset was imbalanced.

What should the engineer do to improve the validation accuracy of the model?

Options:

A.

Perform stratified sampling on the original dataset.

B.

Acquire additional data about the majority classes in the original dataset.

C.

Use a smaller, randomly sampled version of the training dataset.

D.

Perform systematic sampling on the original dataset.

Buy Now
Questions 31

A manufacturing company needs to identify returned smartphones that have been damaged by moisture. The company has an automated process that produces 2.000 diagnostic values for each phone. The database contains more than five million phone evaluations. The evaluation process is consistent, and there are no missing values in the data. A machine learning (ML) specialist has trained an Amazon SageMaker linear learner ML model to classify phones as moisture damaged or not moisture damaged by using all available features. The model's F1 score is 0.6.

What changes in model training would MOST likely improve the model's F1 score? (Select TWO.)

Options:

A.

Continue to use the SageMaker linear learner algorithm. Reduce the number of features with the SageMaker principal component analysis (PCA) algorithm.

B.

Continue to use the SageMaker linear learner algorithm. Reduce the number of features with the scikit-iearn multi-dimensional scaling (MDS) algorithm.

C.

Continue to use the SageMaker linear learner algorithm. Set the predictor type to regressor.

D.

Use the SageMaker k-means algorithm with k of less than 1.000 to train the model

E.

Use the SageMaker k-nearest neighbors (k-NN) algorithm. Set a dimension reduction target of less than 1,000 to train the model.

Buy Now
Questions 32

A retail chain has been ingesting purchasing records from its network of 20,000 stores to Amazon S3 using Amazon Kinesis Data Firehose To support training an improved machine learning model, training records will require new but simple transformations, and some attributes will be combined The model needs lo be retrained daily

Given the large number of stores and the legacy data ingestion, which change will require the LEAST amount of development effort?

Options:

A.

Require that the stores to switch to capturing their data locally on AWS Storage Gateway for loading into Amazon S3 then use AWS Glue to do the transformation

B.

Deploy an Amazon EMR cluster running Apache Spark with the transformation logic, and have the cluster run each day on the accumulating records in Amazon S3, outputting new/transformed records to Amazon S3

C.

Spin up a fleet of Amazon EC2 instances with the transformation logic, have them transform the data records accumulating on Amazon S3, and output the transformed records to Amazon S3.

D.

Insert an Amazon Kinesis Data Analytics stream downstream of the Kinesis Data Firehouse stream that transforms raw record attributes into simple transformed values using SQL.

Buy Now
Questions 33

An ecommerce company wants to use machine learning (ML) to monitor fraudulent transactions on its website. The company is using Amazon SageMaker to research, train, deploy, and monitor the ML models.

The historical transactions data is in a .csv file that is stored in Amazon S3 The data contains features such as the user's IP address, navigation time, average time on each page, and the number of clicks for ....session. There is no label in the data to indicate if a transaction is anomalous.

Which models should the company use in combination to detect anomalous transactions? (Select TWO.)

Options:

A.

IP Insights

B.

K-nearest neighbors (k-NN)

C.

Linear learner with a logistic function

D.

Random Cut Forest (RCF)

E.

XGBoost

Buy Now
Questions 34

A monitoring service generates 1 TB of scale metrics record data every minute A Research team performs queries on this data using Amazon Athena The queries run slowly due to the large volume of data, and the team requires better performance

How should the records be stored in Amazon S3 to improve query performance?

Options:

A.

CSV files

B.

Parquet files

C.

Compressed JSON

D.

RecordIO

Buy Now
Questions 35

A machine learning (ML) specialist is using Amazon SageMaker hyperparameter optimization (HPO) to improve a model’s accuracy. The learning rate parameter is specified in the following HPO configuration:

During the results analysis, the ML specialist determines that most of the training jobs had a learning rate between 0.01 and 0.1. The best result had a learning rate of less than 0.01. Training jobs need to run regularly over a changing dataset. The ML specialist needs to find a tuning mechanism that uses different learning rates more evenly from the provided range between MinValue and MaxValue.

Which solution provides the MOST accurate result?

Options:

A.

Modify the HPO configuration as follows:Select the most accurate hyperparameter configuration form this HPO job.

B.

Run three different HPO jobs that use different learning rates form the following intervals for MinValue and MaxValue while using the same number of training jobs for each HPO job:[0.01, 0.1][0.001, 0.01][0.0001, 0.001]Select the most accurate hyperparameter configuration form these three HPO jobs.

C.

Modify the HPO configuration as follows:Select the most accurate hyperparameter configuration form this training job.

D.

Run three different HPO jobs that use different learning rates form the following intervals for MinValue and MaxValue. Divide the number of training jobs for each HPO job by three:[0.01, 0.1][0.001, 0.01][0.0001, 0.001]Select the most accurate hyperparameter configuration form these three HPO jobs.

Buy Now
Questions 36

A Data Scientist is developing a machine learning model to classify whether a financial transaction is fraudulent. The labeled data available for training consists of 100,000 non-fraudulent observations and 1,000 fraudulent observations.

The Data Scientist applies the XGBoost algorithm to the data, resulting in the following confusion matrix when the trained model is applied to a previously unseen validation dataset. The accuracy of the model is 99.1%, but the Data Scientist has been asked to reduce the number of false negatives.

Which combination of steps should the Data Scientist take to reduce the number of false positive predictions by the model? (Select TWO.)

Options:

A.

Change the XGBoost eval_metric parameter to optimize based on rmse instead of error.

B.

Increase the XGBoost scale_pos_weight parameter to adjust the balance of positive and negative weights.

C.

Increase the XGBoost max_depth parameter because the model is currently underfitting the data.

D.

Change the XGBoost evaljnetric parameter to optimize based on AUC instead of error.

E.

Decrease the XGBoost max_depth parameter because the model is currently overfitting the data.

Buy Now
Questions 37

A data scientist uses Amazon SageMaker Data Wrangler to obtain a feature summary from a dataset that the data scientist imported from Amazon S3. The data scientist notices that the prediction power for a dataset feature has a score of 1.

What is the cause of the score?

Options:

A.

Target leakage occurred in the imported dataset.

B.

The data scientist did not fine-tune the training and validation split.

C.

The SageMaker Data Wrangler algorithm that the data scientist used did not find an optimal model fit for each feature to calculate the prediction power.

D.

The data scientist did not process the features enough to accurately calculate prediction power.

Buy Now
Questions 38

A company is building a demand forecasting model based on machine learning (ML). In the development stage, an ML specialist uses an Amazon SageMaker notebook to perform feature engineering during work hours that consumes low amounts of CPU and memory resources. A data engineer uses the same notebook to perform data preprocessing once a day on average that requires very high memory and completes in only 2 hours. The data preprocessing is not configured to use GPU. All the processes are running well on an ml.m5.4xlarge notebook instance.

The company receives an AWS Budgets alert that the billing for this month exceeds the allocated budget.

Which solution will result in the MOST cost savings?

Options:

A.

Change the notebook instance type to a memory optimized instance with the same vCPU number as the ml.m5.4xlarge instance has. Stop the notebook when it is not in use. Run both data preprocessing and feature engineering development on that instance.

B.

Keep the notebook instance type and size the same. Stop the notebook when it is not in use. Run data preprocessing on a P3 instance type with the same memory as the ml.m5.4xlarge instance by using Amazon SageMaker Processing.

C.

Change the notebook instance type to a smaller general-purpose instance. Stop the notebook when it is not in use. Run data preprocessing on an ml. r5 instance with the same memory size as the ml.m5.4xlarge instance by using Amazon SageMaker Processing.

D.

Change the notebook instance type to a smaller general-purpose instance. Stop the notebook when it is not in use. Run data preprocessing on an R5 instance with the same memory size as the ml.m5.4xlarge instance by using the Reserved Instance option.

Buy Now
Questions 39

A company is using Amazon SageMaker to build a machine learning (ML) model to predict customer churn based on customer call transcripts. Audio files from customer calls are located in an on-premises VoIP system that has petabytes of recorded calls. The on-premises infrastructure has high-velocity networking and connects to the company's AWS infrastructure through a VPN connection over a 100 Mbps connection.

The company has an algorithm for transcribing customer calls that requires GPUs for inference. The company wants to store these transcriptions in an Amazon S3 bucket in the AWS Cloud for model development.

Which solution should an ML specialist use to deliver the transcriptions to the S3 bucket as quickly as possible?

Options:

A.

Order and use an AWS Snowball Edge Compute Optimized device with an NVIDIA Tesla module to run the transcription algorithm. Use AWS DataSync to send the resulting transcriptions to the transcription S3 bucket.

B.

Order and use an AWS Snowcone device with Amazon EC2 Inf1 instances to run the transcription algorithm Use AWS DataSync to send the resulting transcriptions to the transcription S3 bucket

C.

Order and use AWS Outposts to run the transcription algorithm on GPU-based Amazon EC2 instances. Store the resulting transcriptions in the transcription S3 bucket.

D.

Use AWS DataSync to ingest the audio files to Amazon S3. Create an AWS Lambda function to run the transcription algorithm on the audio files when they are uploaded to Amazon S3. Configure the function to write the resulting transcriptions to the transcription S3 bucket.

Buy Now
Questions 40

A company is running a machine learning prediction service that generates 100 TB of predictions every day A Machine Learning Specialist must generate a visualization of the daily precision-recall curve from the predictions, and forward a read-only version to the Business team.

Which solution requires the LEAST coding effort?

Options:

A.

Run a daily Amazon EMR workflow to generate precision-recall data, and save the results in Amazon S3 Give the Business team read-only access to S3

B.

Generate daily precision-recall data in Amazon QuickSight, and publish the results in a dashboard shared with the Business team

C.

Run a daily Amazon EMR workflow to generate precision-recall data, and save the results in Amazon S3 Visualize the arrays in Amazon QuickSight, and publish them in a dashboard shared with the Business team

D.

Generate daily precision-recall data in Amazon ES, and publish the results in a dashboard shared with the Business team.

Buy Now
Questions 41

A Machine Learning Specialist is configuring automatic model tuning in Amazon SageMaker

When using the hyperparameter optimization feature, which of the following guidelines should be followed to improve optimization?

Choose the maximum number of hyperparameters supported by

Options:

A.

Amazon SageMaker to search the largest number of combinations possible

B.

Specify a very large hyperparameter range to allow Amazon SageMaker to cover every possible value.

C.

Use log-scaled hyperparameters to allow the hyperparameter space to be searched as quickly as possible

D.

Execute only one hyperparameter tuning job at a time and improve tuning through successive rounds of experiments

Buy Now
Questions 42

A Machine Learning Specialist is using Amazon Sage Maker to host a model for a highly available customer-facing application.

The Specialist has trained a new version of the model, validated it with historical data, and now wants to deploy it to production To limit any risk of a negative customer experience, the Specialist wants to be able to monitor the model and roll it back, if needed

What is the SIMPLEST approach with the LEAST risk to deploy the model and roll it back, if needed?

Options:

A.

Create a SageMaker endpoint and configuration for the new model version. Redirect production traffic to the new endpoint by updating the client configuration. Revert traffic to the last version if the model does not perform as expected.

B.

Create a SageMaker endpoint and configuration for the new model version. Redirect production traffic to the new endpoint by using a load balancer Revert traffic to the last version if the model does not perform as expected.

C.

Update the existing SageMaker endpoint to use a new configuration that is weighted to send 5% of the traffic to the new variant. Revert traffic to the last version by resetting the weights if the model does not perform as expected.

D.

Update the existing SageMaker endpoint to use a new configuration that is weighted to send 100% of the traffic to the new variant Revert traffic to the last version by resetting the weights if the model does not perform as expected.

Buy Now
Questions 43

A logistics company needs a forecast model to predict next month's inventory requirements for a single item in 10 warehouses. A machine learning specialist uses Amazon Forecast to develop a forecast model from 3 years of monthly data. There is no missing data. The specialist selects the DeepAR+ algorithm to train a predictor. The predictor means absolute percentage error (MAPE) is much larger than the MAPE produced by the current human forecasters.

Which changes to the CreatePredictor API call could improve the MAPE? (Choose two.)

Options:

A.

Set PerformAutoML to true.

B.

Set ForecastHorizon to 4.

C.

Set ForecastFrequency to W for weekly.

D.

Set PerformHPO to true.

E.

Set FeaturizationMethodName to filling.

Buy Now
Questions 44

A Machine Learning Specialist receives customer data for an online shopping website. The data includes demographics, past visits, and locality information. The Specialist must develop a machine learning approach to identify the customer shopping patterns, preferences and trends to enhance the website for better service and smart recommendations.

Which solution should the Specialist recommend?

Options:

A.

Latent Dirichlet Allocation (LDA) for the given collection of discrete data to identify patterns in the customer database.

B.

A neural network with a minimum of three layers and random initial weights to identify patterns in the customer database

C.

Collaborative filtering based on user interactions and correlations to identify patterns in the customer database

D.

Random Cut Forest (RCF) over random subsamples to identify patterns in the customer database

Buy Now
Questions 45

A Data Scientist needs to create a serverless ingestion and analytics solution for high-velocity, real-time streaming data.

The ingestion process must buffer and convert incoming records from JSON to a query-optimized, columnar format without data loss. The output datastore must be highly available, and Analysts must be able to run SQL queries against the data and connect to existing business intelligence dashboards.

Which solution should the Data Scientist build to satisfy the requirements?

Options:

A.

Create a schema in the AWS Glue Data Catalog of the incoming data format. Use an Amazon Kinesis Data Firehose delivery stream to stream the data and transform the data to Apache Parquet or ORC format using the AWS Glue Data Catalog before delivering to Amazon S3. Have the Analysts query the data directly from Amazon S3 using Amazon Athena, and connect to Bl tools using the Athena Java Database Connectivity (JDBC) connector.

B.

Write each JSON record to a staging location in Amazon S3. Use the S3 Put event to trigger an AWS Lambda function that transforms the data into Apache Parquet or ORC format and writes the data to a processed data location in Amazon S3. Have the Analysts query the data directly from Amazon S3 using Amazon Athena, and connect to Bl tools using the Athena Java Database Connectivity (JDBC) connector.

C.

Write each JSON record to a staging location in Amazon S3. Use the S3 Put event to trigger an AWS Lambda function that transforms the data into Apache Parquet or ORC format and inserts it into an Amazon RDS PostgreSQL database. Have the Analysts query and run dashboards from the RDS database.

D.

Use Amazon Kinesis Data Analytics to ingest the streaming data and perform real-time SQL queries to convert the records to Apache Parquet before delivering to Amazon S3. Have the Analysts query the data directly from Amazon S3 using Amazon Athena and connect to Bl tools using the Athena Java Database Connectivity (JDBC) connector.

Buy Now
Questions 46

A machine learning (ML) specialist needs to extract embedding vectors from a text series. The goal is to provide a ready-to-ingest feature space for a data scientist to develop downstream ML predictive models. The text consists of curated sentences in English. Many sentences use similar words but in different contexts. There are questions and answers among the sentences, and the embedding space must differentiate between them.

Which options can produce the required embedding vectors that capture word context and sequential QA information? (Choose two.)

Options:

A.

Amazon SageMaker seq2seq algorithm

B.

Amazon SageMaker BlazingText algorithm in Skip-gram mode

C.

Amazon SageMaker Object2Vec algorithm

D.

Amazon SageMaker BlazingText algorithm in continuous bag-of-words (CBOW) mode

E.

Combination of the Amazon SageMaker BlazingText algorithm in Batch Skip-gram mode with a custom recurrent neural network (RNN)

Buy Now
Questions 47

A Machine Learning Specialist must build out a process to query a dataset on Amazon S3 using Amazon Athena The dataset contains more than 800.000 records stored as plaintext CSV files Each record contains 200 columns and is approximately 1 5 MB in size Most queries will span 5 to 10 columns only

How should the Machine Learning Specialist transform the dataset to minimize query runtime?

Options:

A.

Convert the records to Apache Parquet format

B.

Convert the records to JSON format

C.

Convert the records to GZIP CSV format

D.

Convert the records to XML format

Buy Now
Questions 48

A Data Scientist is developing a binary classifier to predict whether a patient has a particular disease on a series of test results. The Data Scientist has data on 400 patients randomly selected from the population. The disease is seen in 3% of the population.

Which cross-validation strategy should the Data Scientist adopt?

Options:

A.

A k-fold cross-validation strategy with k=5

B.

A stratified k-fold cross-validation strategy with k=5

C.

A k-fold cross-validation strategy with k=5 and 3 repeats

D.

An 80/20 stratified split between training and validation

Buy Now
Questions 49

A data scientist uses Amazon SageMaker Data Wrangler to define and perform transformations and feature engineering on historical data. The data scientist saves the transformations to SageMaker Feature Store.

The historical data is periodically uploaded to an Amazon S3 bucket. The data scientist needs to transform the new historic data and add it to the online feature store The data scientist needs to prepare the .....historic data for training and inference by using native integrations.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Use AWS Lambda to run a predefined SageMaker pipeline to perform the transformations on each new dataset that arrives in the S3 bucket.

B.

Run an AWS Step Functions step and a predefined SageMaker pipeline to perform the transformations on each new dalaset that arrives in the S3 bucket

C.

Use Apache Airflow to orchestrate a set of predefined transformations on each new dataset that arrives in the S3 bucket.

D.

Configure Amazon EventBridge to run a predefined SageMaker pipeline to perform the transformations when a new data is detected in the S3 bucket.

Buy Now
Questions 50

A Machine Learning Specialist uploads a dataset to an Amazon S3 bucket protected with server-side

encryption using AWS KMS.

How should the ML Specialist define the Amazon SageMaker notebook instance so it can read the same

dataset from Amazon S3?

Options:

A.

Define security group(s) to allow all HTTP inbound/outbound traffic and assign those security group(s) tothe Amazon SageMaker notebook instance.

B.

Сonfigure the Amazon SageMaker notebook instance to have access to the VPC. Grant permission in theKMS key policy to the notebook’s KMS role.

C.

Assign an IAM role to the Amazon SageMaker notebook with S3 read access to the dataset. Grantpermission in the KMS key policy to that role.

D.

Assign the same KMS key used to encrypt data in Amazon S3 to the Amazon SageMaker notebookinstance.

Buy Now
Questions 51

A Machine Learning Specialist is deciding between building a naive Bayesian model or a full Bayesian network for a classification problem. The Specialist computes the Pearson correlation coefficients between each feature and finds that their absolute values range between 0.1 to 0.95.

Which model describes the underlying data in this situation?

Options:

A.

A naive Bayesian model, since the features are all conditionally independent.

B.

A full Bayesian network, since the features are all conditionally independent.

C.

A naive Bayesian model, since some of the features are statistically dependent.

D.

A full Bayesian network, since some of the features are statistically dependent.

Buy Now
Questions 52

An automotive company uses computer vision in its autonomous cars. The company trained its object detection models successfully by using transfer learning from a convolutional neural network (CNN). The company trained the models by using PyTorch through the Amazon SageMaker SDK.

The vehicles have limited hardware and compute power. The company wants to optimize the model to reduce memory, battery, and hardware consumption without a significant sacrifice in accuracy.

Which solution will improve the computational efficiency of the models?

Options:

A.

Use Amazon CloudWatch metrics to gain visibility into the SageMaker training weights, gradients, biases, and activation outputs. Compute the filter ranks based on the training information. Apply pruning to remove the low-ranking filters. Set new weights based on the pruned set of filters. Run a new training job with the pruned model.

B.

Use Amazon SageMaker Ground Truth to build and run data labeling workflows. Collect a larger labeled dataset with the labelling workflows. Run a new training job that uses the new labeled data with previous training data.

C.

Use Amazon SageMaker Debugger to gain visibility into the training weights, gradients, biases, and activation outputs. Compute the filter ranks based on the training information. Apply pruning to remove the low-ranking filters. Set the new weights based on the pruned set of filters. Run a new training job with the pruned model.

D.

Use Amazon SageMaker Model Monitor to gain visibility into the ModelLatency metric and OverheadLatency metric of the model after the company deploys the model. Increase the model learning rate. Run a new training job.

Buy Now
Questions 53

A Machine Learning Specialist is working with multiple data sources containing billions of records that need to be joined. What feature engineering and model development approach should the Specialist take with a dataset this large?

Options:

A.

Use an Amazon SageMaker notebook for both feature engineering and model development

B.

Use an Amazon SageMaker notebook for feature engineering and Amazon ML for model development

C.

Use Amazon EMR for feature engineering and Amazon SageMaker SDK for model development

D.

Use Amazon ML for both feature engineering and model development.

Buy Now
Questions 54

A Machine Learning Specialist is working with a large cybersecurily company that manages security events in real time for companies around the world The cybersecurity company wants to design a solution that will allow it to use machine learning to score malicious events as anomalies on the data as it is being ingested The company also wants be able to save the results in its data lake for later processing and analysis

What is the MOST efficient way to accomplish these tasks'?

Options:

A.

Ingest the data using Amazon Kinesis Data Firehose, and use Amazon Kinesis Data Analytics Random Cut Forest (RCF) for anomaly detection Then use Kinesis Data Firehose to stream the results to Amazon S3

B.

Ingest the data into Apache Spark Streaming using Amazon EMR. and use Spark MLlib with k-means to perform anomaly detection Then store the results in an Apache Hadoop Distributed File System (HDFS) using Amazon EMR with a replication factor of three as the data lake

C.

Ingest the data and store it in Amazon S3 Use AWS Batch along with the AWS Deep Learning AMIs to train a k-means model using TensorFlow on the data in Amazon S3.

D.

Ingest the data and store it in Amazon S3. Have an AWS Glue job that is triggered on demand transform the new data Then use the built-in Random Cut Forest (RCF) model within Amazon SageMaker to detect anomalies in the data

Buy Now
Questions 55

A company will use Amazon SageMaker to train and host a machine learning (ML) model for a marketing campaign. The majority of data is sensitive customer data. The data must be encrypted at rest. The company wants AWS to maintain the root of trust for the master keys and wants encryption key usage to be logged.

Which implementation will meet these requirements?

Options:

A.

Use encryption keys that are stored in AWS Cloud HSM to encrypt the ML data volumes, and to encrypt the model artifacts and data in Amazon S3.

B.

Use SageMaker built-in transient keys to encrypt the ML data volumes. Enable default encryption for new Amazon Elastic Block Store (Amazon EBS) volumes.

C.

Use customer managed keys in AWS Key Management Service (AWS KMS) to encrypt the ML data volumes, and to encrypt the model artifacts and data in Amazon S3.

D.

Use AWS Security Token Service (AWS STS) to create temporary tokens to encrypt the ML storage volumes, and to encrypt the model artifacts and data in Amazon S3.

Buy Now
Questions 56

A university wants to develop a targeted recruitment strategy to increase new student enrollment. A data scientist gathers information about the academic performance history of students. The data scientist wants to use the data to build student profiles. The university will use the profiles to direct resources to recruit students who are likely to enroll in the university.

Which combination of steps should the data scientist take to predict whether a particular student applicant is likely to enroll in the university? (Select TWO)

Options:

A.

Use Amazon SageMaker Ground Truth to sort the data into two groups named "enrolled" or "not enrolled."

B.

Use a forecasting algorithm to run predictions.

C.

Use a regression algorithm to run predictions.

D.

Use a classification algorithm to run predictions

E.

Use the built-in Amazon SageMaker k-means algorithm to cluster the data into two groups named "enrolled" or "not enrolled."

Buy Now
Questions 57

A machine learning (ML) engineer is integrating a production model with a customer metadata repository for real-time inference. The repository is hosted in Amazon SageMaker Feature Store. The engineer wants to retrieve only the latest version of the customer metadata record for a single customer at a time.

Which solution will meet these requirements?

Options:

A.

Use the SageMaker Feature Store BatchGetRecord API with the record identifier. Filter to find the latest record.

B.

Create an Amazon Athena query to retrieve the data from the feature table.

C.

Create an Amazon Athena query to retrieve the data from the feature table. Use the write_time value to find the latest record.

D.

Use the SageMaker Feature Store GetRecord API with the record identifier.

Buy Now
Questions 58

A manufacturing company has a production line with sensors that collect hundreds of quality metrics. The company has stored sensor data and manual inspection results in a data lake for several months. To automate quality control, the machine learning team must build an automated mechanism that determines whether the produced goods are good quality, replacement market quality, or scrap quality based on the manual inspection results.

Which modeling approach will deliver the MOST accurate prediction of product quality?

Options:

A.

Amazon SageMaker DeepAR forecasting algorithm

B.

Amazon SageMaker XGBoost algorithm

C.

Amazon SageMaker Latent Dirichlet Allocation (LDA) algorithm

D.

A convolutional neural network (CNN) and ResNet

Buy Now
Questions 59

A Data Scientist needs to migrate an existing on-premises ETL process to the cloud The current process runs at regular time intervals and uses PySpark to combine and format multiple large data sources into a single consolidated output for downstream processing

The Data Scientist has been given the following requirements for the cloud solution

* Combine multiple data sources

* Reuse existing PySpark logic

* Run the solution on the existing schedule

* Minimize the number of servers that will need to be managed

Which architecture should the Data Scientist use to build this solution?

Options:

A.

Write the raw data to Amazon S3 Schedule an AWS Lambda function to submit a Spark step to a persistent Amazon EMR cluster based on the existing schedule Use the existing PySpark logic to run the ETL job on the EMR cluster Output the results to a "processed" location m Amazon S3 that is accessible tor downstream use

B.

Write the raw data to Amazon S3 Create an AWS Glue ETL job to perform the ETL processing against the input data Write the ETL job in PySpark to leverage the existing logic Create a new AWS Glue trigger to trigger the ETL job based on the existing schedule Configure the output target of the ETL job to write to a "processed" location in Amazon S3 that is accessible for downstream use.

C.

Write the raw data to Amazon S3 Schedule an AWS Lambda function to run on the existing schedule and process the input data from Amazon S3 Write the Lambda logic in Python and implement the existing PySpartc logic to perform the ETL process Have the Lambda function output the results to a "processed" location in Amazon S3 that is accessible for downstream use

D.

Use Amazon Kinesis Data Analytics to stream the input data and perform realtime SQL queries against the stream to carry out the required transformations within the stream Deliver the output results to a "processed" location in Amazon S3 that is accessible for downstream use

Buy Now
Questions 60

A Machine Learning Specialist is developing a custom video recommendation model for an application The dataset used to train this model is very large with millions of data points and is hosted in an Amazon S3 bucket The Specialist wants to avoid loading all of this data onto an Amazon SageMaker notebook instance because it would take hours to move and will exceed the attached 5 GB Amazon EBS volume on the notebook instance.

Which approach allows the Specialist to use all the data to train the model?

Options:

A.

Load a smaller subset of the data into the SageMaker notebook and train locally. Confirm that the trainingcode is executing and the model parameters seem reasonable. Initiate a SageMaker training job using thefull dataset from the S3 bucket using Pipe input mode.

B.

Launch an Amazon EC2 instance with an AWS Deep Learning AMI and attach the S3 bucket to theinstance. Train on a small amount of the data to verify the training code and hyperparameters. Go back toAmazon SageMaker and train using the full dataset

C.

Use AWS Glue to train a model using a small subset of the data to confirm that the data will be compatiblewith Amazon SageMaker. Initiate a SageMaker training job using the full dataset from the S3 bucket usingPipe input mode.

D.

Load a smaller subset of the data into the SageMaker notebook and train locally. Confirm that the trainingcode is executing and the model parameters seem reasonable. Launch an Amazon EC2 instance with anAWS Deep Learning AMI and attach the S3 bucket to train the full dataset.

Buy Now
Questions 61

A data engineer at a bank is evaluating a new tabular dataset that includes customer data. The data engineer will use the customer data to create a new model to predict customer behavior. After creating a correlation matrix for the variables, the data engineer notices that many of the 100 features are highly correlated with each other.

Which steps should the data engineer take to address this issue? (Choose two.)

Options:

A.

Use a linear-based algorithm to train the model.

B.

Apply principal component analysis (PCA).

C.

Remove a portion of highly correlated features from the dataset.

D.

Apply min-max feature scaling to the dataset.

E.

Apply one-hot encoding category-based variables.

Buy Now
Questions 62

A machine learning (ML) specialist needs to solve a binary classification problem for a marketing dataset. The ML specialist must maximize the Area Under the ROC Curve (AUC) of the algorithm by training an XGBoost algorithm. The ML specialist must find values for the eta, alpha, min_child_weight, and max_depth hyperparameter that will generate the most accurate model.  

Which approach will meet these requirements with the LEAST operational overhead?  

Options:

A.

Use a bootstrap script to install scikit-learn on an Amazon EMR cluster. Deploy the EMR cluster. Apply k-fold cross-validation methods to the algorithm.

B.

Deploy Amazon SageMaker prebuilt Docker images that have scikit-learn installed. Apply k-fold cross-validation methods to the algorithm.

C.

Use Amazon SageMaker automatic model tuning (AMT). Specify a range of values for each hyperparameter.

D.

Subscribe to an AUC algorithm that is on AWS Marketplace. Specify a range of values for each hyperparameter.

Buy Now
Questions 63

A company wants to enhance audits for its machine learning (ML) systems. The auditing system must be able to perform metadata analysis on the features that the ML models use. The audit solution must generate a report that analyzes the metadata. The solution also must be able to set the data sensitivity and authorship of features.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Use Amazon SageMaker Feature Store to select the features. Create a data flow to perform feature-level metadata analysis. Create an Amazon DynamoDB table to store feature-level metadata. Use Amazon QuickSight to analyze the metadata.

B.

Use Amazon SageMaker Feature Store to set feature groups for the current features that the ML models use. Assign the required metadata for each feature. Use SageMaker Studio to analyze the metadata.

C.

Use Amazon SageMaker Features Store to apply custom algorithms to analyze the feature-level metadata that the company requires. Create an Amazon DynamoDB table to store feature-level metadata. Use Amazon QuickSight to analyze the metadata.

D.

Use Amazon SageMaker Feature Store to set feature groups for the current features that the ML models use. Assign the required metadata for each feature. Use Amazon QuickSight to analyze the metadata.

Buy Now
Questions 64

A retail company uses a machine learning (ML) model for daily sales forecasting. The company’s brand manager reports that the model has provided inaccurate results for the past 3 weeks.

At the end of each day, an AWS Glue job consolidates the input data that is used for the forecasting with the actual daily sales data and the predictions of the model. The AWS Glue job stores the data in Amazon S3. The company’s ML team is using an Amazon SageMaker Studio notebook to gain an understanding about the source of the model's inaccuracies.

What should the ML team do on the SageMaker Studio notebook to visualize the model's degradation MOST accurately?

Options:

A.

Create a histogram of the daily sales over the last 3 weeks. In addition, create a histogram of the daily sales from before that period.

B.

Create a histogram of the model errors over the last 3 weeks. In addition, create a histogram of the model errors from before that period.

C.

Create a line chart with the weekly mean absolute error (MAE) of the model.

D.

Create a scatter plot of daily sales versus model error for the last 3 weeks. In addition, create a scatter plot of daily sales versus model error from before that period.

Buy Now
Questions 65

The Chief Editor for a product catalog wants the Research and Development team to build a machine learning system that can be used to detect whether or not individuals in a collection of images are wearing the company's retail brand The team has a set of training data

Which machine learning algorithm should the researchers use that BEST meets their requirements?

Options:

A.

Latent Dirichlet Allocation (LDA)

B.

Recurrent neural network (RNN)

C.

K-means

D.

Convolutional neural network (CNN)

Buy Now
Questions 66

A company deployed a machine learning (ML) model on the company website to predict real estate prices. Several months after deployment, an ML engineer notices that the accuracy of the model has gradually decreased.

The ML engineer needs to improve the accuracy of the model. The engineer also needs to receive notifications for any future performance issues.

Which solution will meet these requirements?

Options:

A.

Perform incremental training to update the model. Activate Amazon SageMaker Model Monitor to detect model performance issues and to send notifications.

B.

Use Amazon SageMaker Model Governance. Configure Model Governance to automatically adjust model hyper para meters. Create a performance threshold alarm in Amazon CloudWatch to send notifications.

C.

Use Amazon SageMaker Debugger with appropriate thresholds. Configure Debugger to send Amazon CloudWatch alarms to alert the team Retrain the model by using only data from the previous several months.

D.

Use only data from the previous several months to perform incremental training to update the model. Use Amazon SageMaker Model Monitor to detect model performance issues and to send notifications.

Buy Now
Questions 67

A machine learning specialist is running an Amazon SageMaker endpoint using the built-in object detection algorithm on a P3 instance for real-time predictions in a company's production application. When evaluating the model's resource utilization, the specialist notices that the model is using only a fraction of the GPU.

Which architecture changes would ensure that provisioned resources are being utilized effectively?

Options:

A.

Redeploy the model as a batch transform job on an M5 instance.

B.

Redeploy the model on an M5 instance. Attach Amazon Elastic Inference to the instance.

C.

Redeploy the model on a P3dn instance.

D.

Deploy the model onto an Amazon Elastic Container Service (Amazon ECS) cluster using a P3 instance.

Buy Now
Questions 68

A company uses a long short-term memory (LSTM) model to evaluate the risk factors of a particular energy

sector. The model reviews multi-page text documents to analyze each sentence of the text and categorize it as

either a potential risk or no risk. The model is not performing well, even though the Data Scientist has

experimented with many different network structures and tuned the corresponding hyperparameters.

Which approach will provide the MAXIMUM performance boost?

Options:

A.

Initialize the words by term frequency-inverse document frequency (TF-IDF) vectors pretrained on a largecollection of news articles related to the energy sector.

B.

Use gated recurrent units (GRUs) instead of LSTM and run the training process until the validation lossstops decreasing.

C.

Reduce the learning rate and run the training process until the training loss stops decreasing.

D.

Initialize the words by word2vec embeddings pretrained on a large collection of news articles related to theenergy sector.

Buy Now
Questions 69

A Machine Learning Specialist is designing a scalable data storage solution for Amazon SageMaker. There is an existing TensorFlow-based model implemented as a train.py script that relies on static training data that is currently stored as TFRecords.

Which method of providing training data to Amazon SageMaker would meet the business requirements with the LEAST development overhead?

Options:

A.

Use Amazon SageMaker script mode and use train.py unchanged. Point the Amazon SageMaker training invocation to the local path of the data without reformatting the training data.

B.

Use Amazon SageMaker script mode and use train.py unchanged. Put the TFRecord data into an Amazon S3 bucket. Point the Amazon SageMaker training invocation to the S3 bucket without reformatting the training data.

C.

Rewrite the train.py script to add a section that converts TFRecords to protobuf and ingests the protobuf data instead of TFRecords.

D.

Prepare the data in the format accepted by Amazon SageMaker. Use AWS Glue or AWS Lambda to reformat and store the data in an Amazon S3 bucket.

Buy Now
Questions 70

A company plans to build a custom natural language processing (NLP) model to classify and prioritize user feedback. The company hosts the data and all machine learning (ML) infrastructure in the AWS Cloud. The ML team works from the company's office, which has an IPsec VPN connection to one VPC in the AWS Cloud.

The company has set both the enableDnsHostnames attribute and the enableDnsSupport attribute of the VPC to true. The company's DNS resolvers point to the VPC DNS. The company does not allow the ML team to access Amazon SageMaker notebooks through connections that use the public internet. The connection must stay within a private network and within the AWS internal network.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Create a VPC interface endpoint for the SageMaker notebook in the VPC. Access the notebook through a VPN connection and the VPC endpoint.

B.

Create a bastion host by using Amazon EC2 in a public subnet within the VPC. Log in to the bastion host through a VPN connection. Access the SageMaker notebook from the bastion host.

C.

Create a bastion host by using Amazon EC2 in a private subnet within the VPC with a NAT gateway. Log in to the bastion host through a VPN connection. Access the SageMaker notebook from the bastion host.

D.

Create a NAT gateway in the VPC. Access the SageMaker notebook HTTPS endpoint through a VPN connection and the NAT gateway.

Buy Now
Questions 71

A data science team is working with a tabular dataset that the team stores in Amazon S3. The team wants to experiment with different feature transformations such as categorical feature encoding. Then the team wants to visualize the resulting distribution of the dataset. After the team finds an appropriate set of feature transformations, the team wants to automate the workflow for feature transformations.

Which solution will meet these requirements with the MOST operational efficiency?

Options:

A.

Use Amazon SageMaker Data Wrangler preconfigured transformations to explore feature transformations. Use SageMaker Data Wrangler templates for visualization. Export the feature processing workflow to a SageMaker pipeline for automation.

B.

Use an Amazon SageMaker notebook instance to experiment with different feature transformations. Save the transformations to Amazon S3. Use Amazon QuickSight for visualization. Package the feature processing steps into an AWS Lambda function for automation.

C.

Use AWS Glue Studio with custom code to experiment with different feature transformations. Save the transformations to Amazon S3. Use Amazon QuickSight for visualization. Package the feature processing steps into an AWS Lambda function for automation.

D.

Use Amazon SageMaker Data Wrangler preconfigured transformations to experiment with different feature transformations. Save the transformations to Amazon S3. Use Amazon QuickSight for visualzation. Package each feature transformation step into a separate AWS Lambda function. Use AWS Step Functions for workflow automation.

Buy Now
Questions 72

A Data Science team is designing a dataset repository where it will store a large amount of training data commonly used in its machine learning models. As Data Scientists may create an arbitrary number of new datasets every day the solution has to scale automatically and be cost-effective. Also, it must be possible to explore the data using SQL.

Which storage scheme is MOST adapted to this scenario?

Options:

A.

Store datasets as files in Amazon S3.

B.

Store datasets as files in an Amazon EBS volume attached to an Amazon EC2 instance.

C.

Store datasets as tables in a multi-node Amazon Redshift cluster.

D.

Store datasets as global tables in Amazon DynamoDB.

Buy Now
Questions 73

A company provisions Amazon SageMaker notebook instances for its data science team and creates Amazon VPC interface endpoints to ensure communication between the VPC and the notebook instances. All connections to the Amazon SageMaker API are contained entirely and securely using the AWS network. However, the data science team realizes that individuals outside the VPC can still connect to the notebook instances across the internet.

Which set of actions should the data science team take to fix the issue?

Options:

A.

Modify the notebook instances' security group to allow traffic only from the CIDR ranges of the VPC. Apply this security group to all of the notebook instances' VPC interfaces.

B.

Create an IAM policy that allows the sagemaker:CreatePresignedNotebooklnstanceUrl and sagemaker:DescribeNotebooklnstance actions from only the VPC endpoints. Apply this policy to all IAM users, groups, and roles used to access the notebook instances.

C.

Add a NAT gateway to the VPC. Convert all of the subnets where the Amazon SageMaker notebook instances are hosted to private subnets. Stop and start all of the notebook instances to reassign only private IP addresses.

D.

Change the network ACL of the subnet the notebook is hosted in to restrict access to anyone outside the VPC.

Buy Now
Questions 74

An online reseller has a large, multi-column dataset with one column missing 30% of its data A Machine Learning Specialist believes that certain columns in the dataset could be used to reconstruct the missing data.

Which reconstruction approach should the Specialist use to preserve the integrity of the dataset?

Options:

A.

Listwise deletion

B.

Last observation carried forward

C.

Multiple imputation

D.

Mean substitution

Buy Now
Questions 75

A large JSON dataset for a project has been uploaded to a private Amazon S3 bucket The Machine Learning Specialist wants to securely access and explore the data from an Amazon SageMaker notebook instance A new VPC was created and assigned to the Specialist

How can the privacy and integrity of the data stored in Amazon S3 be maintained while granting access to the Specialist for analysis?

Options:

A.

Launch the SageMaker notebook instance within the VPC with SageMaker-provided internet access enabled Use an S3 ACL to open read privileges to the everyone group

B.

Launch the SageMaker notebook instance within the VPC and create an S3 VPC endpoint for the notebook to access the data Copy the JSON dataset from Amazon S3 into the ML storage volume on the SageMaker notebook instance and work against the local dataset

C.

Launch the SageMaker notebook instance within the VPC and create an S3 VPC endpoint for the notebook to access the data Define a custom S3 bucket policy to only allow requests from your VPC to access the S3 bucket

D.

Launch the SageMaker notebook instance within the VPC with SageMaker-provided internet access enabled. Generate an S3 pre-signed URL for access to data in the bucket

Buy Now
Questions 76

A bank wants to launch a low-rate credit promotion. The bank is located in a town that recently experienced economic hardship. Only some of the bank's customers were affected by the crisis, so the bank's credit team must identify which customers to target with the promotion. However, the credit team wants to make sure that loyal customers' full credit history is considered when the decision is made.

The bank's data science team developed a model that classifies account transactions and understands credit eligibility. The data science team used the XGBoost algorithm to train the model. The team used 7 years of bank transaction historical data for training and hyperparameter tuning over the course of several days.

The accuracy of the model is sufficient, but the credit team is struggling to explain accurately why the model denies credit to some customers. The credit team has almost no skill in data science.

What should the data science team do to address this issue in the MOST operationally efficient manner?

Options:

A.

Use Amazon SageMaker Studio to rebuild the model. Create a notebook that uses the XGBoost training container to perform model training. Deploy the model at an endpoint. Enable Amazon SageMaker Model Monitor to store inferences. Use the inferences to create Shapley values that help explain model behavior. Create a chart that shows features and SHapley Additive exPlanations (SHAP) values to explain to the credit team how the features affect t

B.

Use Amazon SageMaker Studio to rebuild the model. Create a notebook that uses the XGBoost training container to perform model training. Activate Amazon SageMaker Debugger, and configure it to calculate and collect Shapley values. Create a chart that shows features and SHapley Additive exPlanations (SHAP) values to explain to the credit team how the features affect the model outcomes.

C.

Create an Amazon SageMaker notebook instance. Use the notebook instance and the XGBoost library to locally retrain the model. Use the plot_importance() method in the Python XGBoost interface to create a feature importance chart. Use that chart to explain to the credit team how the features affect the model outcomes.

D.

Use Amazon SageMaker Studio to rebuild the model. Create a notebook that uses the XGBoost training container to perform model training. Deploy the model at an endpoint. Use Amazon SageMaker Processing to post-analyze the model and create a feature importance explainability chart automatically for the credit team.

Buy Now
Questions 77

A Machine Learning Specialist observes several performance problems with the training portion of a machine learning solution on Amazon SageMaker The solution uses a large training dataset 2 TB in size and is using the SageMaker k-means algorithm The observed issues include the unacceptable length of time it takes before the training job launches and poor I/O throughput while training the model

What should the Specialist do to address the performance issues with the current solution?

Options:

A.

Use the SageMaker batch transform feature

B.

Compress the training data into Apache Parquet format.

C.

Ensure that the input mode for the training job is set to Pipe.

D.

Copy the training dataset to an Amazon EFS volume mounted on the SageMaker instance.

Buy Now
Questions 78

A data scientist has been running an Amazon SageMaker notebook instance for a few weeks. During this time, a new version of Jupyter Notebook was released along with additional software updates. The security team mandates that all running SageMaker notebook instances use the latest security and software updates provided by SageMaker.

How can the data scientist meet these requirements?

Options:

A.

Call the CreateNotebookInstanceLifecycleConfig API operation

B.

Create a new SageMaker notebook instance and mount the Amazon Elastic Block Store (Amazon EBS) volume from the original instance

C.

Stop and then restart the SageMaker notebook instance

D.

Call the UpdateNotebookInstanceLifecycleConfig API operation

Buy Now
Questions 79

A data scientist needs to create a model for predictive maintenance. The model will be based on historical data to identify rare anomalies in the data.

The historical data is stored in an Amazon S3 bucket. The data scientist needs to use Amazon SageMaker Data Wrangler to ingest the data. The data scientists also needs to perform exploratory data analysis (EDA) to understand the statistical properties of the data.

Which solution will meet these requirements with the LEAST amount of compute resources?

Options:

A.

Import the data by using the None option.

B.

Import the data by using the Stratified option.

C.

Import the data by using the First K option. Infer the value of K from domain knowledge.

D.

Import the data by using the Randomized option. Infer the random size from domain knowledge.

Buy Now
Questions 80

A bank's Machine Learning team is developing an approach for credit card fraud detection The company has a large dataset of historical data labeled as fraudulent The goal is to build a model to take the information from new transactions and predict whether each transaction is fraudulent or not

Which built-in Amazon SageMaker machine learning algorithm should be used for modeling this problem?

Options:

A.

Seq2seq

B.

XGBoost

C.

K-means

D.

Random Cut Forest (RCF)

Buy Now
Questions 81

A data scientist is training a large PyTorch model by using Amazon SageMaker. It takes 10 hours on average to train the model on GPU instances. The data scientist suspects that training is not converging and that

resource utilization is not optimal.

What should the data scientist do to identify and address training issues with the LEAST development effort?

Options:

A.

Use CPU utilization metrics that are captured in Amazon CloudWatch. Configure a CloudWatch alarm to stop the training job early if low CPU utilization occurs.

B.

Use high-resolution custom metrics that are captured in Amazon CloudWatch. Configure an AWS Lambda function to analyze the metrics and to stop the training job early if issues are detected.

C.

Use the SageMaker Debugger vanishing_gradient and LowGPUUtilization built-in rules to detect issues and to launch the StopTrainingJob action if issues are detected.

D.

Use the SageMaker Debugger confusion and feature_importance_overweight built-in rules to detect issues and to launch the StopTrainingJob action if issues are detected.

Buy Now
Questions 82

A Machine Learning Specialist is packaging a custom ResNet model into a Docker container so the company can leverage Amazon SageMaker for training The Specialist is using Amazon EC2 P3 instances to train the model and needs to properly configure the Docker container to leverage the NVIDIA GPUs

What does the Specialist need to do1?

Options:

A.

Bundle the NVIDIA drivers with the Docker image

B.

Build the Docker container to be NVIDIA-Docker compatible

C.

Organize the Docker container's file structure to execute on GPU instances.

D.

Set the GPU flag in the Amazon SageMaker Create TrainingJob request body

Buy Now
Questions 83

A company ingests machine learning (ML) data from web advertising clicks into an Amazon S3 data lake. Click data is added to an Amazon Kinesis data stream by using the Kinesis Producer Library (KPL). The data is loaded into the S3 data lake from the data stream by using an Amazon Kinesis Data Firehose delivery stream. As the data volume increases, an ML specialist notices that the rate of data ingested into Amazon S3 is relatively constant. There also is an increasing backlog of data for Kinesis Data Streams and Kinesis Data Firehose to ingest.

Which next step is MOST likely to improve the data ingestion rate into Amazon S3?

Options:

A.

Increase the number of S3 prefixes for the delivery stream to write to.

B.

Decrease the retention period for the data stream.

C.

Increase the number of shards for the data stream.

D.

Add more consumers using the Kinesis Client Library (KCL).

Buy Now
Questions 84

While working on a neural network project, a Machine Learning Specialist discovers thai some features in the data have very high magnitude resulting in this data being weighted more in the cost function What should the Specialist do to ensure better convergence during backpropagation?

Options:

A.

Dimensionality reduction

B.

Data normalization

C.

Model regulanzation

D.

Data augmentation for the minority class

Buy Now
Questions 85

A company wants to segment a large group of customers into subgroups based on shared characteristics. The company’s data scientist is planning to use the Amazon SageMaker built-in k-means clustering algorithm for this task. The data scientist needs to determine the optimal number of subgroups (k) to use.

Which data visualization approach will MOST accurately determine the optimal value of k?

Options:

A.

Calculate the principal component analysis (PCA) components. Run the k-means clustering algorithm for a range of k by using only the first two PCA components. For each value of k, create a scatter plot with a different color for each cluster. The optimal value of k is the value where the clusters start to look reasonably separated.

B.

Calculate the principal component analysis (PCA) components. Create a line plot of the number of components against the explained variance. The optimal value of k is the number of PCA components after which the curve starts decreasing in a linear fashion.

C.

Create a t-distributed stochastic neighbor embedding (t-SNE) plot for a range of perplexity values. The optimal value of k is the value of perplexity, where the clusters start to look reasonably separated.

D.

Run the k-means clustering algorithm for a range of k. For each value of k, calculate the sum of squared errors (SSE). Plot a line chart of the SSE for each value of k. The optimal value of k is the point after which the curve starts decreasing in a linear fashion.

Buy Now
Questions 86

A company wants to predict the classification of documents that are created from an application. New documents are saved to an Amazon S3 bucket every 3 seconds. The company has developed three versions of a machine learning (ML) model within Amazon SageMaker to classify document text. The company wants to deploy these three versions to predict the classification of each document.

Which approach will meet these requirements with the LEAST operational overhead?

Options:

A.

Configure an S3 event notification that invokes an AWS Lambda function when new documents are created. Configure the Lambda function to create three SageMaker batch transform jobs, one batch transform job for each model for each document.

B.

Deploy all the models to a single SageMaker endpoint. Treat each model as a production variant. Configure an S3 event notification that invokes an AWS Lambda function when new documents are created. Configure the Lambda function to call each production variant and return the results of each model.

C.

Deploy each model to its own SageMaker endpoint Configure an S3 event notification that invokes an AWS Lambda function when new documents are created. Configure the Lambda function to call each endpoint and return the results of each model.

D.

Deploy each model to its own SageMaker endpoint. Create three AWS Lambda functions. Configure each Lambda function to call a different endpoint and return the results. Configure three S3 event notifications to invoke the Lambda functions when new documents are created.

Buy Now
Questions 87

A company decides to use Amazon SageMaker to develop machine learning (ML) models. The company will host SageMaker notebook instances in a VPC. The company stores training data in an Amazon S3 bucket. Company security policy states that SageMaker notebook instances must not have internet connectivity.

Which solution will meet the company's security requirements?

Options:

A.

Connect the SageMaker notebook instances that are in the VPC by using AWS Site-to-Site VPN to encrypt all internet-bound traffic. Configure VPC flow logs. Monitor all network traffic to detect and prevent any malicious activity.

B.

Configure the VPC that contains the SageMaker notebook instances to use VPC interface endpoints to establish connections for training and hosting. Modify any existing security groups that are associated with the VPC interface endpoint to only allow outbound connections for training and hosting.

C.

Create an IAM policy that prevents access to the internet. Apply the IAM policy to an IAM role. Assign the IAM role to the SageMaker notebook instances in addition to any IAM roles that are already assigned to the instances.

D.

Create VPC security groups to prevent all incoming and outgoing traffic. Assign the security groups to the SageMaker notebook instances.

Buy Now
Questions 88

A financial services company wants to adopt Amazon SageMaker as its default data science environment. The company's data scientists run machine learning (ML) models on confidential financial data. The company is worried about data egress and wants an ML engineer to secure the environment.

Which mechanisms can the ML engineer use to control data egress from SageMaker? (Choose three.)

Options:

A.

Connect to SageMaker by using a VPC interface endpoint powered by AWS PrivateLink.

B.

Use SCPs to restrict access to SageMaker.

C.

Disable root access on the SageMaker notebook instances.

D.

Enable network isolation for training jobs and models.

E.

Restrict notebook presigned URLs to specific IPs used by the company.

F.

Protect data with encryption at rest and in transit. Use AWS Key Management Service (AWS KMS) to manage encryption keys.

Buy Now
Questions 89

A retail company is selling products through a global online marketplace. The company wants to use machine learning (ML) to analyze customer feedback and identify specific areas for improvement. A developer has built a tool that collects customer reviews from the online marketplace and stores them in an Amazon S3 bucket. This process yields a dataset of 40 reviews. A data scientist building the ML models must identify additional sources of data to increase the size of the dataset.

Which data sources should the data scientist use to augment the dataset of reviews? (Choose three.)

Options:

A.

Emails exchanged by customers and the company’s customer service agents

B.

Social media posts containing the name of the company or its products

C.

A publicly available collection of news articles

D.

A publicly available collection of customer reviews

E.

Product sales revenue figures for the company

F.

Instruction manuals for the company’s products

Buy Now
Questions 90

A law firm handles thousands of contracts every day. Every contract must be signed. Currently, a lawyer manually checks all contracts for signatures.

The law firm is developing a machine learning (ML) solution to automate signature detection for each contract. The ML solution must also provide a confidence score for each contract page.

Which Amazon Textract API action can the law firm use to generate a confidence score for each page of each contract?

Options:

A.

Use the AnalyzeDocument API action. Set the FeatureTypes parameter to SIGNATURES. Return the confidence scores for each page.

B.

Use the Prediction API call on the documents. Return the signatures and confidence scores for each page.

C.

Use the StartDocumentAnalysis API action to detect the signatures. Return the confidence scores for each page.

D.

Use the GetDocumentAnalysis API action to detect the signatures. Return the confidence scores for each page

Buy Now
Questions 91

A data scientist uses Amazon SageMaker Data Wrangler to analyze and visualize data. The data scientist wants to refine a training dataset by selecting predictor variables that are strongly predictive of the target variable. The target variable correlates with other predictor variables.

The data scientist wants to understand the variance in the data along various directions in the feature space.

Which solution will meet these requirements?

Options:

A.

Use the SageMaker Data Wrangler multicollinearity measurement features with a variance inflation factor (VIF) score. Use the VIF score as a measurement of how closely the variables are related to each other.

B.

Use the SageMaker Data Wrangler Data Quality and Insights Report quick model visualization to estimate the expected quality of a model that is trained on the data.

C.

Use the SageMaker Data Wrangler multicollinearity measurement features with the principal component analysis (PCA) algorithm to provide a feature space that includes all of the predictor variables.

D.

Use the SageMaker Data Wrangler Data Quality and Insights Report feature to review features by their predictive power.

Buy Now
Questions 92

A data scientist receives a collection of insurance claim records. Each record includes a claim ID. the final outcome of the insurance claim, and the date of the final outcome.

The final outcome of each claim is a selection from among 200 outcome categories. Some claim records include only partial information. However, incomplete claim records include only 3 or 4 outcome ...gones from among the 200 available outcome categories. The collection includes hundreds of records for each outcome category. The records are from the previous 3 years.

The data scientist must create a solution to predict the number of claims that will be in each outcome category every month, several months in advance.

Which solution will meet these requirements?

Options:

A.

Perform classification every month by using supervised learning of the 20X3 outcome categories based on claim contents.

B.

Perform reinforcement learning by using claim IDs and dates Instruct the insurance agents who submit the claim records to estimate the expected number of claims in each outcome category every month

C.

Perform forecasting by using claim IDs and dates to identify the expected number ot claims in each outcome category every month.

D.

Perform classification by using supervised learning of the outcome categories for which partial information on claim contents is provided. Perform forecasting by using claim IDs and dates for all other outcome categories.

Buy Now
Questions 93

A Data Scientist is building a linear regression model and will use resulting p-values to evaluate the statistical significance of each coefficient. Upon inspection of the dataset, the Data Scientist discovers that most of the features are normally distributed. The plot of one feature in the dataset is shown in the graphic.

What transformation should the Data Scientist apply to satisfy the statistical assumptions of the linear

regression model?

Options:

A.

Exponential transformation

B.

Logarithmic transformation

C.

Polynomial transformation

D.

Sinusoidal transformation

Buy Now
Questions 94

A data scientist is designing a repository that will contain many images of vehicles. The repository must scale automatically in size to store new images every day. The repository must support versioning of the images. The data scientist must implement a solution that maintains multiple immediately accessible copies of the data in different AWS Regions.

Which solution will meet these requirements?

Options:

A.

Amazon S3 with S3 Cross-Region Replication (CRR)

B.

Amazon Elastic Block Store (Amazon EBS) with snapshots that are shared in a secondary Region

C.

Amazon Elastic File System (Amazon EFS) Standard storage that is configured with Regional availability

D.

AWS Storage Gateway Volume Gateway

Buy Now
Questions 95

An online delivery company wants to choose the fastest courier for each delivery at the moment an order is placed. The company wants to implement this feature for existing users and new users of its application. Data scientists have trained separate models with XGBoost for this purpose, and the models are stored in Amazon S3. There is one model fof each city where the company operates.

The engineers are hosting these models in Amazon EC2 for responding to the web client requests, with one instance for each model, but the instances have only a 5% utilization in CPU and memory, ....operation engineers want to avoid managing unnecessary resources.

Which solution will enable the company to achieve its goal with the LEAST operational overhead?

Options:

A.

Create an Amazon SageMaker notebook instance for pulling all the models from Amazon S3 using the boto3 library. Remove the existing instances and use the notebook to perform a SageMaker batch transform for performing inferences offline for all the possible users in all the cities. Store the results in different files in Amazon S3. Point the web client to the files.

B.

Prepare an Amazon SageMaker Docker container based on the open-source multi-model server. Remove the existing instances and create a multi-model endpoint in SageMaker instead, pointing to the S3 bucket containing all the models Invoke the endpoint from the web client at runtime, specifying the TargetModel parameter according to the city of each request.

C.

Keep only a single EC2 instance for hosting all the models. Install a model server in the instance and load each model by pulling it from Amazon S3. Integrate the instance with the web client using Amazon API Gateway for responding to the requests in real time, specifying the target resource according to the city of each request.

D.

Prepare a Docker container based on the prebuilt images in Amazon SageMaker. Replace the existing instances with separate SageMaker endpoints. one for each city where the company operates. Invoke the endpoints from the web client, specifying the URL and EndpomtName parameter according to the city of each request.

Buy Now
Questions 96

An agricultural company is interested in using machine learning to detect specific types of weeds in a 100-acre grassland field. Currently, the company uses tractor-mounted cameras to capture multiple images of the field as 10 × 10 grids. The company also has a large training dataset that consists of annotated images of popular weed classes like broadleaf and non-broadleaf docks.

The company wants to build a weed detection model that will detect specific types of weeds and the location of each type within the field. Once the model is ready, it will be hosted on Amazon SageMaker endpoints. The model will perform real-time inferencing using the images captured by the cameras.

Which approach should a Machine Learning Specialist take to obtain accurate predictions?

Options:

A.

Prepare the images in RecordIO format and upload them to Amazon S3. Use Amazon SageMaker to train, test, and validate the model using an image classification algorithm to categorize images into various weed classes.

B.

Prepare the images in Apache Parquet format and upload them to Amazon S3. Use Amazon SageMaker to train, test, and validate the model using an object-detection single-shot multibox detector (SSD) algorithm.

C.

Prepare the images in RecordIO format and upload them to Amazon S3. Use Amazon SageMaker to train, test, and validate the model using an object-detection single-shot multibox detector (SSD) algorithm.

D.

Prepare the images in Apache Parquet format and upload them to Amazon S3. Use Amazon SageMaker to train, test, and validate the model using an image classification algorithm to categorize images into various weed classes.

Buy Now
Questions 97

An agency collects census information within a country to determine healthcare and social program needs by province and city. The census form collects responses for approximately 500 questions from each citizen

Which combination of algorithms would provide the appropriate insights? (Select TWO )

Options:

A.

The factorization machines (FM) algorithm

B.

The Latent Dirichlet Allocation (LDA) algorithm

C.

The principal component analysis (PCA) algorithm

D.

The k-means algorithm

E.

The Random Cut Forest (RCF) algorithm

Buy Now
Questions 98

A data engineer needs to provide a team of data scientists with the appropriate dataset to run machine learning training jobs. The data will be stored in Amazon S3. The data engineer is obtaining the data from an Amazon Redshift database and is using join queries to extract a single tabular dataset. A portion of the schema is as follows:

...traction Timestamp (Timeslamp)

...JName(Varchar)

...JNo (Varchar)

Th data engineer must provide the data so that any row with a CardNo value of NULL is removed. Also, the TransactionTimestamp column must be separated into a TransactionDate column and a isactionTime column Finally, the CardName column must be renamed to NameOnCard.

The data will be extracted on a monthly basis and will be loaded into an S3 bucket. The solution must minimize the effort that is needed to set up infrastructure for the ingestion and transformation. The solution must be automated and must minimize the load on the Amazon Redshift cluster

Which solution meets these requirements?

Options:

A.

Set up an Amazon EMR cluster Create an Apache Spark job to read the data from the Amazon Redshift cluster and transform the data. Load the data into the S3 bucket. Schedule the job to run monthly.

B.

Set up an Amazon EC2 instance with a SQL client tool, such as SQL Workbench/J. to query the data from the Amazon Redshift cluster directly. Export the resulting dataset into a We. Upload the file into the S3 bucket. Perform these tasks monthly.

C.

Set up an AWS Glue job that has the Amazon Redshift cluster as the source and the S3 bucket as the destination Use the built-in transforms Filter, Map. and RenameField to perform the required transformations. Schedule the job to run monthly.

D.

Use Amazon Redshift Spectrum to run a query that writes the data directly to the S3 bucket. Create an AWS Lambda function to run the query monthly

Buy Now
Questions 99

A Machine Learning Specialist is training a model to identify the make and model of vehicles in images The Specialist wants to use transfer learning and an existing model trained on images of general objects The Specialist collated a large custom dataset of pictures containing different vehicle makes and models.

What should the Specialist do to initialize the model to re-train it with the custom data?

Options:

A.

Initialize the model with random weights in all layers including the last fully connected layer

B.

Initialize the model with pre-trained weights in all layers and replace the last fully connected layer.

C.

Initialize the model with random weights in all layers and replace the last fully connected layer

D.

Initialize the model with pre-trained weights in all layers including the last fully connected layer

Buy Now
Exam Code: MLS-C01
Exam Name: AWS Certified Machine Learning - Specialty
Last Update: Jun 15, 2025
Questions: 330
MLS-C01 pdf

MLS-C01 PDF

$29.75  $84.99
MLS-C01 Engine

MLS-C01 Testing Engine

$35  $99.99
MLS-C01 PDF + Engine

MLS-C01 PDF + Testing Engine

$47.25  $134.99